稀土耐熱鎂合金微觀結(jié)構(gòu)對性能的影響研究
[Abstract]:Magnesium and rare earth resources are abundant in our country, so the research and development of heat-resistant magnesium alloys containing rare earth have obvious advantages. Low-cost heat-resistant magnesium alloys for automobiles will be the key to the development of magnesium industry in the 21st century. The effects of rare earth elements and RE-rich mixed rare earth elements on the microstructure, thermal stability, mechanical properties and corrosion properties of Mg-Al based die casting and casting alloys were studied. The microstructure, mechanical properties and second phase strengthening mechanism of extruded Mg-12Ymm-4Zn (Ymm is Yttrium-rich rare earth mixture) alloy were studied. Mg-4Al-4RE alloy (AE44) was prepared by die casting, in which RE is La, Ce, Pr, Nd mixed rare earth (La: Ce: Pr: Nd = 23:55:6:16, wt.) The results show that the die casting Mg-4Al-4RE alloy has good flowing formability, no obvious defects, uniform microstructure and good die casting performance; the grain size is about 10 micron, and the strengthening phases are Al11RE3 and Al2RE, needle-like/layer. Al11RE3 was mainly distributed around the grain boundary in the form of dense arrangement. The contents of Al11RE3 and A12RE were 5.73% and 0.36% respectively. The Al 11RE3 phase in the alloy was unstable at high temperature. When the alloy was heated at 400 C for 5000 hours, the Al RE intermetallic space was determined. Al-RE intermetallics are more loosely distributed in the alloys and no longer distribute along grain boundaries. Many Al-RE intermetallics are transformed into A12RE phase under test conditions (heating at 400 C for 5000 hours). Quantitative calculation shows that after heating at 400 C for 5000 hours, Al-RE intermetallics are more loosely distributed. Al11RE3 and Al2RE contents are 4.46% and 0.96% respectively. The alloy has good tensile properties in the temperature range from room temperature to 200%. The tensile strength is 252 MPa, the yield strength is 146 MPa, and the elongation is 11.4%. The tensile strength is 116 MPa, the yield strength is 102 MPa, and the elongation is 25.1%. For die-cast AE44 alloy, heating at 400 ~1000 is small. The corrosion behavior of three alloys heated at 400 C for 5000 hours shows that as-cast alloys have high corrosion resistance, which is mainly attributed to the large number of lamellar/acicular Al11RE3 phases distributed along the grain boundaries of the alloys as corrosion barriers. Mg-xAl-yLa (x=4,8; y=2,5,8) alloy was prepared by gravity casting method. The microstructure, mechanical properties and corrosion resistance of the alloy were studied. AlLa45 alloy was mainly composed of alpha-Mg and Al11La3 phases. The properties and strong corrosion resistance of Mg-4Al-xPr (x=2,5) alloys are mainly attributed to the presence of a large number of stable strengthening phases, Al 11La 3, which accumulate at grain boundaries and strengthen grain boundaries. The unstable phase Mg17Al12 in the alloy is completely inhibited. With the increase of Pr content, the amount of Al 11Pr 3 and Al 2Pr increases obviously. Al 11Pr 3 is a temperature-sensitive reinforcement phase. The acicular Al 11Pr 3 phase transforms into granular Al 2Pr phase when heated at 400 C for 5000 hours. The fine grain strengthening and the grain boundary strengthening and solid solution strengthening produced by the aggregation of a large number of second phases at grain boundaries are the main reasons for the good tensile properties of the alloy. AE42 and AE4 5 alloys are mainly composed of a-Mg, a large number of Al11RE3 phases and a small amount of Al2RE phases. The lamellar/acicular Al11RE3 phases are distributed in clusters on the grain boundaries. After 1000 hours and 5000 hours of heating treatment at 400 C, the Al11RE3 phase decomposes and partially decomposes into Al2RE phase, which proves that the Al11RE3 phase is heated for a long time at high temperature. The results show that the AE45 alloy has the best mechanical properties at room temperature and high temperature. A large number of lamellar/acicular Al11RE3 phases are distributed in the grain boundary region. The Al11RE3 phase is approximately parallel to the lamellar state, which makes the alloy have better comprehensive strength and plasticity. The tensile strength and yield strength of the extruded Mg-12Ymm-4Zn alloy are similar to those at room temperature, 314MPa and 231MPa at 300 C, 338MPa and 278MPa at room temperature, respectively. The excellent mechanical properties of the extruded Mg-12Ymm-4Zn alloy at high temperatures are mainly due to the formation of Long-period Stacking ordered phases and nano-spacing with high volume fraction. The effect of stacking faults.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TG146.22
【相似文獻】
相關(guān)期刊論文 前10條
1 王祝堂;耐熱鎂合金[J];輕合金加工技術(shù);2000年03期
2 郭旭濤,李培杰,曾大本;稀土在耐熱鎂合金中的應(yīng)用[J];稀土;2002年02期
3 梁維中 ,吉澤升 ,左鋒 ,洪艷 ,劉洪匯 ,李軍 ,劉洪德;耐熱鎂合金的研究現(xiàn)狀及發(fā)展趨勢[J];特種鑄造及有色合金;2003年02期
4 王小強;李全安;張興淵;;我國耐熱鎂合金的研究進展[J];上海有色金屬;2007年02期
5 謝建昌;李全安;李建弘;張興淵;;耐熱鎂合金及其開發(fā)思路[J];鑄造技術(shù);2008年01期
6 張春香;王利國;吳立鴻;陳培磊;陳海軍;關(guān)紹康;;主要耐熱鎂合金系的研究進展[J];材料科學(xué)與工程學(xué)報;2008年04期
7 趙惠;李平倉;黃張洪;王虎年;;耐熱鎂合金綜述[J];輕合金加工技術(shù);2010年04期
8 田樹科;郭學(xué)鋒;崔紅保;黃丹;王英;;耐熱鎂合金的研究進展[J];鑄造技術(shù);2011年08期
9 郭旭濤,李培杰,劉樹勛,曾大本;稀土耐熱鎂合金發(fā)展現(xiàn)狀及展望[J];鑄造;2002年02期
10 閆蘊琪,張廷杰,鄧炬,周廉;耐熱鎂合金的研究現(xiàn)狀與發(fā)展方向[J];稀有金屬材料與工程;2004年06期
相關(guān)會議論文 前7條
1 曲迎東;邱克強;馬廣輝;李榮德;;耐熱鎂合金的研究現(xiàn)狀與趨勢[A];2012年全國地方機械工程學(xué)會學(xué)術(shù)年會論文集(《機械》2012增刊)[C];2012年
2 李建弘;李全安;謝建昌;王小強;張興淵;;稀土耐熱鎂合金的開發(fā)與應(yīng)用[A];2007高技術(shù)新材料產(chǎn)業(yè)發(fā)展研討會暨《材料導(dǎo)報》編委會年會論文集[C];2007年
3 黃文剛;劉波;劉建才;李曉青;;耐熱鎂合金研究進展及在汽車上的應(yīng)用[A];2012重慶汽車工程學(xué)會年會論文集[C];2012年
4 黃文剛;劉波;劉建才;李曉青;;耐熱鎂合金研究進展及在汽車上的應(yīng)用[A];西南汽車信息:2012年下半年合刊[C];2012年
5 張磊;龔明;彭良明;;Mg-Gd-Y-Sn-Zr高強耐熱鎂合金的微觀結(jié)構(gòu)與力學(xué)性能[A];2012年海峽兩岸破壞科學(xué)/材料試驗學(xué)術(shù)會議論文摘要集[C];2012年
6 任文亮;李全安;石雅靜;張興淵;;稀土Nd在耐熱鎂合金中的應(yīng)用[A];2009中國功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2009年
7 艾延齡;劉江文;羅承萍;;含Ca、Si鎂合金的力學(xué)性能分析[A];2004年中國材料研討會論文摘要集[C];2004年
相關(guān)博士學(xué)位論文 前4條
1 焦玉鳳;稀土耐熱鎂合金微觀結(jié)構(gòu)對性能的影響研究[D];哈爾濱工程大學(xué);2016年
2 文麗華;固相再生ZM6耐熱鎂合金組織和性能研究[D];哈爾濱理工大學(xué);2009年
3 付三玲;Mg-Gd(-Y-Sm-Zr)耐熱鎂合金組織和性能研究[D];西安理工大學(xué);2016年
4 薛山;含Nd耐熱鎂合金顯微組織和性能的研究[D];東南大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 王金偉;Mg-Al-Si-Sr耐熱鎂合金成分設(shè)計與組織性能研究[D];山東建筑大學(xué);2015年
2 田治坤;大型高強耐熱鎂合金構(gòu)件的熱處理工藝研究[D];中北大學(xué);2016年
3 張薇;稀土元素對耐熱鎂合金組織和性能的影響[D];西安建筑科技大學(xué);2016年
4 遲大釗;稀土及鋯、鈣對耐熱鎂合金組織及性能的影響研究[D];哈爾濱理工大學(xué);2004年
5 孫巖;發(fā)動機缸體用耐熱鎂合金的研究[D];太原理工大學(xué);2013年
6 汪洋;含稀土耐熱鎂合金擠壓工藝及其組織與性能研究[D];華東理工大學(xué);2013年
7 耿寧寧;幾種耐熱鎂合金的組織及性能[D];沈陽工業(yè)大學(xué);2013年
8 徐道芬;耐熱鎂合金壓蠕變行為的研究[D];西華大學(xué);2008年
9 張青輝;耐熱鎂合金的組織與高溫性能[D];四川大學(xué);2007年
10 楊剛;鈣對AE系耐熱鎂合金凝固行為的影響[D];西華大學(xué);2013年
,本文編號:2202491
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2202491.html