薄壁曲面零件數(shù)字化制造優(yōu)化技術研究
[Abstract]:With the wide application of thin-walled curved surface parts, the design and machining of thin-walled curved surface parts has become a hot spot in the field of digital design and manufacturing (CAD/CAM) development and application. The shape of thin-walled curved parts is long, the rigidity difference is easy to deform, the deformation compensation is difficult, and the clamping is very difficult. Numerical control machining of thin-walled curved parts is the research focus in the field of digital manufacturing. In this paper, the NC programming technology, NC machining technology and surface fixture for thin-walled curved surface parts are deeply studied. Aiming at the bottleneck problems such as the discontinuity of traditional NC cutter path, or the continuous path of cutter path but too much angle transfer, which seriously restricts the cutting performance of high speed machining, this paper presents a new method for the generation of compound helical cutter track for high speed machining. Aiming at the cutting stability of high speed machining, the complex free-form surface is subdivided into "flat surface", "top plane-steep surface", "top flat surface-steep surface" and "composite steep surface". According to their different shape characteristics and technological characteristics, the compound helical cutter rails with different structures are developed, which can meet the harsh requirements of high-speed machining of various complex free-form surfaces, and effectively solve the cutting chatter and vibration in high-speed machining. The machining efficiency and precision of thin-walled curved parts are improved obviously. Aiming at the common distortion phenomenon in the process of surface reverse construction, the traditional deformation compensation technology, reverse engineering technology and numerical control 5-axis CAM technology are effectively combined with the construction of deformation compensation surface as the core, and the new results of the traditional deformation compensation technology, reverse engineering technology and numerical control 5-axis CAM technology are effectively combined. The "spline curve fitting optimization method", "surface reconstruction technology optimization method" and "CAM programming method based on surface 3D normal compensation" for thin-walled surface deformation compensation are proposed, which realize the integration of surface error compensation and NC programming. The accuracy of surface deformation compensation and the efficiency of CAM programming are greatly improved. In view of the lack of efficient adaptive fixture for thin-walled curved surface parts in tooling design, The adaptive multi-point curved surface fixture for ring thin-wall blank and the multi-point surface adaptive vacuum fixture for thin-walled curved box parts are developed. Multi-point curved surface adaptive fixture combines the advantages of mechanical structure and hydraulic structure. Compared with the traditional fixture, the number of contact points is multiplied, the multi-point floating function is realized in the structure, the shape adaptability is strong and the clamping efficiency is high. Can meet the automatic production line for freeform surface parts fast clamping requirements. The results of finite element analysis and practical application show that the adaptive fixture can meet the requirements of the automatic production line for fast clamping of free-form surfaces. The research results of this paper provide new methods and tools for the application of high speed cutting technology of thin-walled surface parts, three-dimensional deformation compensation technology of thin-walled surface and adaptive fixture of multi-point curved surface.
【學位授予單位】:江蘇大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:TG659
【相似文獻】
相關期刊論文 前10條
1 李新強,王建平,徐瑞霞;車內(nèi)復雜曲面工裝[J];機械工人.冷加工;2005年03期
2 陳欣;金俊杰;王可;;一種復雜曲面測量新技術的理論研究[J];組合機床與自動化加工技術;2007年02期
3 何靈;空間立體曲面零件的編程和加工[J];機床;1992年03期
4 謝展;錢志良;張新建;;規(guī)則曲面?zhèn)茹娺^程中的刀位計算[J];機械工程師;2007年12期
5 周紀軍;石濤;;曲面零部件加工技術問答[J];家具;2003年06期
6 牟魯西;尹周平;;基于誤差分析的曲面組合測量方法研究[J];現(xiàn)代制造工程;2012年10期
7 謝叻,周儒榮,阮雪榆;自由曲面零件余量加工算法[J];機械工程學報;2003年05期
8 佛新崗;;MasterCAM曲面精加工方案選擇研究[J];煤礦機械;2012年01期
9 黃大貴,武好明,謝偉;直線元成型復雜曲面的五坐標CNC加工技術[J];電子科技大學學報;1996年03期
10 謝秋馨;;在Master CAM中進行曲面自動加工教學的探索[J];湖南農(nóng)機;2013年01期
相關會議論文 前2條
1 童偉;劉建養(yǎng);;高精度參數(shù)化曲面的造型和加工技術探討[A];中國電子學會生產(chǎn)技術學分會機械加工專業(yè)委員會第八屆學術年會論文集[C];2001年
2 申曉龍;張來希;;數(shù)控線切割加工模具曲面裝置的改造研究[A];第14屆全國特種加工學術會議論文集[C];2011年
相關博士學位論文 前10條
1 吳海東;面向航空發(fā)動機葉片頂端修復的曲面再生算法與誤差分析[D];廣東工業(yè)大學;2015年
2 王曉飛;復雜曲面測量規(guī)劃及定位技術研究[D];天津大學;2014年
3 趙東宏;薄壁曲面零件數(shù)字化制造優(yōu)化技術研究[D];江蘇大學;2016年
4 王立成;復雜曲面原位檢測方法與實驗研究[D];華中科技大學;2012年
5 牟魯西;復雜曲面零件在機測量關鍵技術研究與應用[D];華中科技大學;2012年
6 鐘山;復雜曲面正向/逆向快速設計關鍵技術與增材制造數(shù)據(jù)處理方法研究[D];華南理工大學;2013年
7 孔令葉;軸對稱回轉(zhuǎn)曲面精密磨削加工技術研究[D];廣東工業(yè)大學;2011年
8 楊建中;復雜多曲面數(shù)控加工刀具軌跡生成方法研究[D];華中科技大學;2007年
9 李國;基于刀具擺動進給的非球曲面超精密車削方法及系統(tǒng)研究[D];哈爾濱工業(yè)大學;2010年
10 鄭剛;復雜曲面非球頭刀寬行銑削加工的幾何學原理與方法[D];上海交通大學;2012年
相關碩士學位論文 前10條
1 任衍濤;基于慢刀伺服的曲面準柔性拋光技術研究[D];太原科技大學;2015年
2 劉鳴華;基于結構仿生的派生曲面研究[D];燕山大學;2011年
3 胡濱;異型功能曲面的數(shù)字化閉環(huán)創(chuàng)成技術的研究[D];山東大學;2007年
4 江歡;曲面展開方法及其計算機實現(xiàn)的研究[D];西安理工大學;2009年
5 孟凡秋;基于Mastercam的凸形曲面數(shù)控加工技術研究[D];山東大學;2008年
6 李堅;非回轉(zhuǎn)對稱光學曲面車削加工誤差評定的研究[D];吉林大學;2011年
7 張建平;整體葉輪葉片曲面?zhèn)茹娂庸さ牡段灰?guī)劃研究[D];大連交通大學;2010年
8 劉飛鵬;基于主曲率匹配曲面分片的五軸加工軌跡規(guī)劃研究[D];廣東工業(yè)大學;2011年
9 魏彥波;基于UG的碗形曲面數(shù)控加工技術研究[D];山東大學;2010年
10 吳劍鋒;逆向工程中基于CCD的曲面測量方法研究[D];浙江大學;2005年
,本文編號:2197767
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2197767.html