磨料預(yù)釬焊金剛石工具的基礎(chǔ)研究
[Abstract]:With the development of science and technology and the progress of society, the application of sintered metal binder diamond tools is becoming more and more extensive, but the weak holding strength of metal binders to diamond abrasives is the most important factor that affects the service life of tools. Focusing on the key problem of holding strength of diamond abrasives, a new technology of surface metallization of diamond abrasives using high temperature brazing technology, I. E. diamond abrasive prebrazing technology, is put forward in this paper. The prebrazing diamond abrasive and its tools were prepared by this process. The main work of this paper is as follows: (1) the pre-brazing process of diamond abrasive is developed, and the pre-brazing diamond is prepared by using the Ni / Cr alloy composite solder and the Cu / Sn / Ti alloy brazing filler metal, respectively, which have been added with Cu / C _ e alloy powder, and the results are as follows: (1) the diamond pre-brazing technology is developed. The compressive strength of pre-brazed diamond is analyzed. The strength losses caused by the two kinds of brazing filler metals to diamond are 12% and 4.6%, respectively, which meet the requirements of application. (2) the optimum range of Ni / Cr alloy content in the composite brazing alloy is determined to be 30% and 35% respectively. The microstructure of the bonding zone of prebrazed diamond, the bonding area of prebrazed diamond and the fracture surface of pre-brazed diamond were analyzed by means of scanning electron microscope, energy spectrometer and X-ray diffractometer. The results show that The interfacial bonding strength of the chemically bonded Ni / Cr alloy pre-brazed diamond knots is higher than that of the non-brazed diamond knots. (3) the pre-brazing of Cu, Sn and Ti alloys has been determined. The average weight gain coefficient of diamond should not exceed 6.4. The microstructure of the bonding zone of prebrazed diamond, the bonding area of prebrazed diamond and the fracture surface of pre-brazed diamond were analyzed by means of scanning electron microscope, energy spectrometer and X-ray diffractometer. The results show that the interfacial bonding strength of the pre-brazed diamond knots formed between the brazing alloy and the diamond is higher than that of the non-brazed diamond segment. (4) the geometry of diamond abrasive particles is studied by ANSYS finite element simulation. The effects of abrasive concentration, thickness of carbide layer and area of prebrazing layer on the overall stress distribution and mechanical properties of pre-brazed diamond joints are investigated. The variation trend of the simulation results is consistent with the experimental results. (5) the slotted grinding wheel is prepared by pre-brazing diamond abrasive particles. The machining properties of diamond grinding wheel without pre-brazing diamond grinding wheel and pre-brazing diamond grinding wheel with Cu _ (Sn) Ti alloy prebrazed with Ni / Cr alloy composite brazing alloy were studied. The results show that when the content of Ni / Cr alloy is 35% or 30%, the comprehensive processing property of grinding wheel is the best, and the average weight gain coefficient of pre-brazed diamond is 6.4%. The sharpness and service life of the grinding wheel are the highest, and the processing performance of the two pre-brazed diamond grinding wheels is better than that of the non-brazed diamond grinding wheel.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TG731
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊志峰;黃建行;周玉梅;張鳳林;;釬焊金剛石取孔鉆的制備及其鉆削性能研究[J];超硬材料工程;2008年01期
2 郭長(zhǎng)文;張鳳林;聶勵(lì)鵬;;釬焊金剛石取孔鉆加工實(shí)驗(yàn)研究[J];超硬材料工程;2009年04期
3 王麗卿;吳占海;郭佳;;釬焊金剛石工具性能影響因素研究[J];機(jī)械工程師;2010年07期
4 周玉梅,章兼植,呂智,陳敢新;高溫釬焊金剛石工具的研究進(jìn)展[J];焊接技術(shù);2003年05期
5 馬伯江,徐鴻鈞,付玉燦,肖冰,徐九華;兩種釬焊金剛石工具微觀結(jié)構(gòu)的對(duì)比分析[J];機(jī)械工程材料;2005年07期
6 張子煜;肖冰;王波;吳家柏;;釬焊金剛石薄壁小孔鉆研制[J];機(jī)械制造與自動(dòng)化;2011年04期
7 鄭望明;黃國(guó)欽;徐西鵬;;弱化處理對(duì)釬焊金剛石性能影響的實(shí)驗(yàn)研究[J];金剛石與磨料磨具工程;2013年05期
8 張賓;沈劍云;徐西鵬;;釬焊金剛石砂輪修整實(shí)驗(yàn)研究[J];金剛石與磨料磨具工程;2007年06期
9 馬伯江;徐鴻鈞;;釬焊金剛石表面碳化物形成的動(dòng)力學(xué)研究[J];金剛石與磨料磨具工程;2008年01期
10 夏斯偉;馬若飛;段端志;李文杰;;燒結(jié)磨輪用銅基釬料真空預(yù)釬焊金剛石的性能研究[J];超硬材料工程;2013年06期
相關(guān)會(huì)議論文 前2條
1 盧金斌;孟普;張旺璽;王志新;郭建;侯小振;張瑞杰;;Ni-Cr合金保護(hù)氣氛釬焊金剛石的分析[A];2011中國(guó)材料研討會(huì)論文摘要集[C];2011年
2 孟衛(wèi)如;徐可為;楊吉軍;賀林;;用于單層釬焊金剛石的Cu-Mn系活性釬料[A];第五屆全國(guó)表面工程學(xué)術(shù)會(huì)議論文集[C];2004年
相關(guān)博士學(xué)位論文 前3條
1 丁蘭英;自潤(rùn)滑多層有序釬焊金剛石工具技術(shù)研究[D];南京航空航天大學(xué);2014年
2 段端志;磨料預(yù)釬焊金剛石工具的基礎(chǔ)研究[D];南京航空航天大學(xué);2016年
3 陳燕;高溫釬焊金剛石磨料熱損傷分析及其控制對(duì)策的基礎(chǔ)研究[D];南京航空航天大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 龐倩;Cu基釬料感應(yīng)釬焊金剛石微粉工藝及其性能的研究[D];青島科技大學(xué);2015年
2 樓堅(jiān)鵬;Ni基釬料感應(yīng)釬焊金剛石微粉工藝及其性能的研究[D];青島科技大學(xué);2015年
3 張涵源;晶態(tài)和非晶態(tài)Ni基釬料感應(yīng)釬焊金剛石的研究[D];青島科技大學(xué);2016年
4 韓鵬;磨粒預(yù)釬焊金剛石雕刻磨頭的研制及其加工性能研究[D];南京航空航天大學(xué);2015年
5 賀亞勛;含Cr活性釬料釬焊金剛石的機(jī)理分析[D];中原工學(xué)院;2016年
6 屠文彬;基于有限元的真空釬焊金剛石線鋸的溫度場(chǎng)的數(shù)值模擬[D];南京航空航天大學(xué);2016年
7 季冬明;磨粒預(yù)釬焊金剛石工具的加工性能研究[D];南京航空航天大學(xué);2016年
8 邵明嘉;基于磨粒地貌優(yōu)化的釬焊金剛石磨拋盤(pán)性能研究[D];南京航空航天大學(xué);2016年
9 李文霞;釬焊金剛石磨拋盤(pán)基體設(shè)計(jì)及磨拋性能試驗(yàn)研究[D];南京航空航天大學(xué);2015年
10 張野;釬焊金剛石薄壁鉆的制備與磨損研究[D];大連理工大學(xué);2016年
,本文編號(hào):2194538
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2194538.html