影響工作精度的五軸數(shù)控機(jī)床聯(lián)動性能測試方法研究
[Abstract]:Manufacturing industry is the pillar industry of the national economy. NC machine tools, especially five-axis NC machine tools, have become indispensable to all walks of life and an important symbol of national production capacity and automation level. It is very important to study the testing problem of the five-axis machine tool linkage performance which affects the working accuracy for improving the machining ability and precision of the five-axis machine tool. The effect of servo control system on multi-axis linkage accuracy and surface quality of standard specimens is studied. An efficient testing method for five-axis NC machine tool linkage accuracy is explored. The testing method of five-axis machine tool linkage performance based on RTCP (Rotation Tool Center Point) and S specimens is studied to reveal the cutting tool of five-axis machine tool in multi-axis linkage. This paper studies the Traceability Method of 5-axis NC machine tool linkage error, and provides guidance suggestions for dynamic parameter adjustment of 5-axis NC machine tool. The mechanism of five-axis machine tool linkage performance in the formation of local abnormal surfaces on standard test specimens is studied. Chapter 4 analyzes the testing principle of five-axis machine tool linkage performance based on RTCP testing. Chapter 5 compares the testing trajectories of five-axis machine tool linkage performance based on RTCP testing. The following research results have been obtained: (1) To reveal the inherent relationship between the linkage performance and the surface structure of the workpiece in the five-axis machine tool linkage machining. In the process of action, the surface micro-component of contour error is extracted by high-pass filter, and then magnified and directly superimposed on the surface of the workpiece to show the surface quality of different positions. It is proved that the five-axis machine tool linkage error is the main cause of abnormal surface of the workpiece. It is found that S specimens possess the characteristics of varying curvature, discontinuous curved surface and abundant motion state. The internal relationship between surface quality and linkage error of machine tools is proved by simulation and test of standard specimens. Compared with the NAS979 conical table, the S specimen can show the advantages and disadvantages of the five-axis machine tool linkage performance more intuitively and effectively. (2) This paper presents a RTCP testing track which is different from ISO standard to display the linkage performance of five-axis machine tools effectively and conveniently. The dynamic errors of translational axis and rotational axis have different effects on tool tip errors, indicating that the RTCP-based testing method for five-axis machine tools is feasible. By analyzing the relationship between translational axis motion and rotational axis motion, the definition method of RTCP detection trajectory characterized by rotational axis motion parameters is determined. The influence of rotational axis motion parameters on RTCP detection results is analyzed, and the detection method based on cosine function different from ISO standard trajectory is proposed. Four cosine trajectories are defined. The geometric characteristics of four cosine trajectories and ISO standard trajectories, the sensitivity of tool tip error to machine tool linkage performance parameters are compared and analyzed. It is found that circular trajectory s2T and zigzag trajectory s3T have variable curvature and more abundant joint velocity. Degree state and higher error sensitivity. Taking the optimum sensitivity as the objective function, the RTCP detection trajectory is optimized based on genetic algorithm. The corresponding optimized detection trajectories of various dynamic performances of machine tools are obtained: s3T trajectory, 345sT trajectory and 390sT trajectory. The results show that the RTCP optimized detection trajectory is superior to the five-axis machine tool in the detection ability of linkage performance. (3) An image recognition-based linkage error category tracing method and a trajectory similarity-based linkage error precise tracing method are proposed. Based on the different characteristics of tool tip error trajectory under different five-axis machine tool linkage performance, the machine tool linkage error is divided into 75 categories. The tool tip error trajectory is normalized in multi-dimension, and the tool is extracted by Fourier descriptor. The characteristics of tool point error trajectory are compared with the error trajectory in the standard library of machine tool linkage error to find the closest graph and determine the type of five-axis machine tool linkage error. This paper proves that the Traceability Method Based on image recognition and trajectory similarity can accurately trace the difference of five-axis machine tool linkage performance and provide guidance suggestions for adjusting servo parameters of five-axis machine tool. The accuracy of the traceability results is guaranteed, and the traceability efficiency is improved. Therefore, the tool tip error can be used to trace the linkage performance difference of five-axis machine tools more effectively and conveniently.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TG659
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王偉;莊文浩;陶文堅;;采用測量不確定度的復(fù)雜自由曲面表面質(zhì)量測試與評價[J];西安交通大學(xué)學(xué)報;2016年08期
2 王偉;張心羽;梅雄;;五軸數(shù)控機(jī)床進(jìn)給系統(tǒng)剛度對自由曲面輪廓誤差影響機(jī)理研究[J];機(jī)械工程學(xué)報;2016年21期
3 張曙;張柄生;;中國機(jī)床工業(yè)的回顧與展望[J];機(jī)械設(shè)計與制造工程;2016年01期
4 姜忠;丁杰雄;王偉;鄧夢;杜麗;宋智勇;;基于RTCP功能的五軸數(shù)控機(jī)床動態(tài)誤差溯源方法[J];機(jī)械工程學(xué)報;2016年07期
5 李金華;;德國“工業(yè)4.0”與“中國制造2025”的比較及啟示[J];中國地質(zhì)大學(xué)學(xué)報(社會科學(xué)版);2015年05期
6 周濟(jì);;智能制造——“中國制造2025”的主攻方向[J];中國機(jī)械工程;2015年17期
7 胡明旺;;《中國制造2025》支撐中華民族偉大復(fù)興——《中國制造2025》起草組組長、規(guī)劃編制負(fù)責(zé)人、工業(yè)和信息化部原黨組副書記、副部長蘇波權(quán)威解讀《中國制造2025》[J];裝備制造;2015年09期
8 趙海濤;馮偉;周海;楊建國;;基于熱誤差敏感度圖的溫度關(guān)鍵點選擇方法[J];上海交通大學(xué)學(xué)報;2015年05期
9 苗恩銘;高增漢;黨連春;苗繼超;;數(shù)控機(jī)床熱誤差特性分析[J];中國機(jī)械工程;2015年08期
10 杜麗;鄭從志;邊志遠(yuǎn);趙旭東;王偉;;“S”形精度檢驗試件的簡化重構(gòu)與優(yōu)化研究[J];組合機(jī)床與自動化加工技術(shù);2015年04期
相關(guān)博士學(xué)位論文 前5條
1 謝東;數(shù)控機(jī)床工作精度檢驗中的運(yùn)動控制指標(biāo)作用機(jī)理研究[D];電子科技大學(xué);2015年
2 張士雄;數(shù)控機(jī)床用高性能交流伺服驅(qū)動控制技術(shù)研究[D];華南理工大學(xué);2010年
3 胡自化;薄壁件數(shù)控側(cè)銑若干基礎(chǔ)理論、實驗及集成技術(shù)問題的研究[D];湘潭大學(xué);2008年
4 商鵬;基于球桿儀的高速五軸數(shù)控機(jī)床綜合誤差建模與檢測方法[D];天津大學(xué);2008年
5 粟時平;多軸數(shù)控機(jī)床精度建模與誤差補(bǔ)償方法研究[D];中國人民解放軍國防科學(xué)技術(shù)大學(xué);2002年
相關(guān)碩士學(xué)位論文 前7條
1 陶文堅;五軸數(shù)控機(jī)床動態(tài)精度檢驗試件曲面作用機(jī)理研究[D];電子科技大學(xué);2016年
2 鄭從志;五軸數(shù)控機(jī)床精度檢驗試件的型面重構(gòu)與優(yōu)化研究[D];電子科技大學(xué);2015年
3 聶雪華;基于傅里葉描述子的四桿機(jī)構(gòu)連桿曲線復(fù)演研究[D];華南理工大學(xué);2015年
4 崔浪浪;基于“S”形檢驗試件的數(shù)控機(jī)床動態(tài)因素誤差分析及溯源[D];電子科技大學(xué);2013年
5 劉端健;精密數(shù)控機(jī)床伺服系統(tǒng)控制參數(shù)優(yōu)化研究與應(yīng)用[D];中南大學(xué);2013年
6 李亞聰;數(shù)控機(jī)床伺服系統(tǒng)參數(shù)優(yōu)化配置的研究[D];大連理工大學(xué);2009年
7 喬志峰;復(fù)雜形面的五軸數(shù)控系統(tǒng)加工研究[D];天津大學(xué);2009年
,本文編號:2183364
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2183364.html