H340LAD_Z高強度鋼板成形極限圖的構(gòu)建
[Abstract]:In recent years, with the rapid development of sheet metal finite element simulation technology, finite element analysis technology has entered the stage of practical production and has been widely used in automobile production in more and more countries, but due to the division of elements, the choice of iterative parameters. The modeling of sheet metal, initial value, boundary condition and the setting of the criterion have certain influence on the accuracy and result of simulation. Therefore, the research on the simulation accuracy of finite element software is carried out. It has important theoretical significance and application value to promote sheet metal stamping forming technology and the development of automobile industry in China. In this paper, the forming limit test and numerical simulation of H340LAD_Z niobium microalloyed steel are carried out. On this basis, single factor simulation test analysis and orthogonal simulation test optimization analysis of material properties parameter hardening index (n), yield function index parameter (m) and thickness anisotropy index (r) are carried out. In order to reveal the influence of material parameters on the forming limit diagram and obtain the optimized material parameters, the accuracy of the results is verified by uniaxial tensile experiments. The main research content is: 1, using XJTUDIC three-dimensional digital speckle strain measurement and analysis system to test the forming limit of 9 specimens with different widths designed by GB, taking points from the last picture taken before rupture, and solving the limit strain. Finally, the maximum and minimum principal strain were obtained, and the forming limit diagram of H340LAD_Z niobium microalloyed steel was obtained by Matlab fitting. The forming limit test was simulated by Dynaform software. Two criteria are synthesized: the maximum load criterion is used in the left tension and compression zone, and the strain path criterion is used in the right tension and tension zone. The limit strain data of sheet metal. 3 can be obtained accurately. The influence of yield function exponent parameter m, hardening index n and thickness anisotropy index of sheet metal on forming limit diagram is studied by single factor method. The forming limit curve increases with the increase of the hardening index n, but decreases with the increase of the thickness anisotropy index r and the yield function exponent m. Taking three material parameters as experimental factors, orthogonal experimental design was carried out to study the significance of the influence of each factor level on sheet metal forming limit curve. The results show that the order of influencing factors is as follows: hardening exponent n yield function parameter m thickness anisotropy index r, the optimal material parameter combination is hardening index n 0. 18, yield function exponent parameter m 0. 4, thick anisotropy index r = 0. 9 4. The optimum material parameters are adopted before optimization using Dynaform, respectively. The ultimate strain diagram and ultimate load of the specimen were obtained by numerical simulation of the parameters of the material properties after uniaxial tensile test. Compared with the corresponding results obtained from the uniaxial tensile test, the optimized material parameters are more close to the experimental results. Before uniaxial tensile test and optimization, the relative error of limit strain is 6.2% and 2.5%, and the relative error of limit displacement is 15% and 6.3 respectively. It is concluded that the simulation accuracy of Dynaform software is improved by the optimized set of material performance parameters.
【學(xué)位授予單位】:天津職業(yè)技術(shù)師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TG386
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 盧國清,邱曉剛;成形極限圖的測試、應(yīng)用和可信度分析[J];理化檢驗(物理分冊);2002年11期
2 盧國清,邱曉剛,駱中云,陳文龍;成形極限圖的測試、應(yīng)用和可信度分析[J];鋼鐵釩鈦;2002年03期
3 龍衛(wèi)國,金波,湯池;厚向異性薄板成形極限圖的計算分析[J];南華大學(xué)學(xué)報(理工版);2001年03期
4 邱曉剛,盧國清,陳文龍,唐暉;坐標(biāo)網(wǎng)分析技術(shù)與成形極限圖的應(yīng)用[J];理化檢驗(物理分冊);2002年07期
5 陳煒;郭偉剛;侯波;張家驊;;基于厚度梯度準(zhǔn)則的薄板成形極限圖建立方法[J];中國機械工程;2007年18期
6 鳳佩華;金屬薄板成形極限圖試驗方法[J];汽車技術(shù);1986年01期
7 常志華;于連仲;;成形極限圖的制作方法[J];汽車工藝;1987年04期
8 連建設(shè);周大軍;隋忠祥;薛祥義;劉玉文;譚善錕;王曉玲;余克欽;黃春杰;;汽車薄鋼板塑性成形極限圖的試驗研究[J];汽車工藝;1989年06期
9 江健;孔泰;楊松;;獲得成形極限圖的雙板實驗方法[J];鍛壓技術(shù);1989年02期
10 陳光南;沈還;胡世光;;成形極限圖左半部薄板失穩(wěn)行為與極限應(yīng)變——失穩(wěn)過程實驗研究[J];鋼鐵研究;1991年05期
相關(guān)會議論文 前4條
1 盧國清;邱曉剛;;成形極限圖的測試、應(yīng)用和可信度分析[A];全國材料理化測試與產(chǎn)品質(zhì)量控制學(xué)術(shù)研討會論文專輯(物理測試部分)[C];2002年
2 陳明和;王東;高霖;左敦穩(wěn);王珉;;基于有限元仿真方法建立成形極限圖[A];中國科協(xié)第二屆優(yōu)秀博士生學(xué)術(shù)年會材料科學(xué)技術(shù)分會論文集[C];2003年
3 方健;魏毅靜;王承忠;;薄板成形極限圖(FLD)的多項式擬合分析[A];全國材料理化測試與產(chǎn)品質(zhì)量控制學(xué)術(shù)研討會論文專輯(物理測試部分)[C];2002年
4 薛玉雷;陳明和;;基于Dynaform的應(yīng)力成形極限圖的應(yīng)用研究[A];第三屆華東六省一市塑性工程學(xué)術(shù)年會論文集[C];2005年
相關(guān)碩士學(xué)位論文 前7條
1 田麗雯;H340LAD_Z高強度鋼板成形極限圖的構(gòu)建[D];天津職業(yè)技術(shù)師范大學(xué);2016年
2 劉毅;AZ31鎂合金板材熱態(tài)下成形極限圖的試驗研究與數(shù)值模擬[D];太原理工大學(xué);2012年
3 馮華云;高強鋼激光拼焊板成形極限圖的試驗與預(yù)測研究[D];江蘇大學(xué);2008年
4 閆辰侃;鎂鋁層合板的熱軋成形及熱成形極限圖研究[D];太原理工大學(xué);2014年
5 黃莉莉;鎂鋁復(fù)合板的制備及熱態(tài)成形極限圖的實驗研究[D];太原理工大學(xué);2013年
6 王承鑫;鈦合金及Ti_2AlNb金屬間化合物板材熱成形極限圖[D];哈爾濱工業(yè)大學(xué);2014年
7 龍文寶;鍍鎳鋼帶的應(yīng)力成形極限圖研究與應(yīng)用[D];湘潭大學(xué);2013年
,本文編號:2176045
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2176045.html