天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 鑄造論文 >

H340LAD_Z高強(qiáng)度鋼板成形極限圖的構(gòu)建

發(fā)布時(shí)間:2018-08-10 20:00
【摘要】:近些年板料有限元模擬技術(shù)快速發(fā)展,有限元分析技術(shù)已經(jīng)進(jìn)入實(shí)際生產(chǎn)運(yùn)用階段,在越來越多國家的汽車生產(chǎn)中都得到了廣泛的應(yīng)用,但由于單元?jiǎng)澐帧⒌鷧?shù)的選擇、板料建模、初值、邊界條件和判段準(zhǔn)則的設(shè)置,均對模擬的精度和結(jié)果有一定的影響,因此,開展對有限元軟件模擬精度的研究,對推進(jìn)板料沖壓成形技術(shù)和我國汽車業(yè)的發(fā)展具有重要的理論意義和應(yīng)用價(jià)值。本文開展了H340LAD_Z鈮微合金鋼成形極限試驗(yàn)和數(shù)值模擬,在此基礎(chǔ)上開展了材料性能參數(shù)硬化指數(shù)n、屈服函數(shù)指數(shù)參數(shù)m、厚向異性指數(shù)r的單因素模擬試驗(yàn)分析和正交模擬試驗(yàn)優(yōu)化分析,從而揭示材料參數(shù)的對成形極限圖的影響規(guī)律并獲得優(yōu)化材料參數(shù),最后通過單向拉伸實(shí)驗(yàn)驗(yàn)證結(jié)果的準(zhǔn)確性。主要研究內(nèi)容:1、運(yùn)用XJTUDIC三維數(shù)字散斑應(yīng)變測量分析系統(tǒng)對國標(biāo)設(shè)計(jì)的9個(gè)不同寬度試樣進(jìn)行成形極限試驗(yàn),在破裂前采集的最后一張圖片上取點(diǎn),求解極限應(yīng)變,最終獲得最大、最小主應(yīng)變,并運(yùn)用Matlab擬合得到H340LAD_Z鈮微合金鋼的成形極限圖。2、運(yùn)用Dynaform軟件進(jìn)行成形極限試驗(yàn)數(shù)值模擬。綜合兩種判據(jù):左側(cè)拉-壓區(qū)運(yùn)用最大載荷判據(jù),右側(cè)拉-拉區(qū)運(yùn)用應(yīng)變路徑判據(jù),能較準(zhǔn)確地獲得板料的極限應(yīng)變數(shù)據(jù)。3、采用單因素法研究屈服函數(shù)指數(shù)參數(shù)m、硬化指數(shù)n以及板料的厚向異性指數(shù)r對成形極限圖的影響。成形極限曲線會(huì)隨著板料的硬化指數(shù)n的增大而上升,但會(huì)因?yàn)楹裣虍愋灾笖?shù)r和屈服函數(shù)指數(shù)m的增大而下降。以三種材料參數(shù)為試驗(yàn)因素,進(jìn)行正交試驗(yàn)設(shè)計(jì),研究各因素水平對于板料成形極限曲線的影響顯著性。由分析結(jié)果得出因素影響順序:硬化指數(shù)n屈服函數(shù)指數(shù)參數(shù)m厚向異性指數(shù)r,最優(yōu)材料參數(shù)組合為:硬化指數(shù)n=0.18,屈服函數(shù)指數(shù)參數(shù)m=4,厚向異性指數(shù)r=0.9。4、運(yùn)用Dynaform分別采用優(yōu)化前、后的材料性能參數(shù)值進(jìn)行單向拉伸數(shù)值模擬,獲取試樣的極限應(yīng)變圖和極限載荷,并與單向拉伸試驗(yàn)獲得的相應(yīng)結(jié)果對比,得出優(yōu)化得到的材料參數(shù)更接近于試驗(yàn)結(jié)果。單向拉伸實(shí)驗(yàn)和采用優(yōu)化前、優(yōu)化后材料參數(shù)模擬獲得的極限應(yīng)變的相對誤差為6.2%和2.5%,極限位移的相對誤差為15%和6.3%,得出優(yōu)化后的一組材料性能參數(shù)提高了Dynaform軟件模擬精度。
[Abstract]:In recent years, with the rapid development of sheet metal finite element simulation technology, finite element analysis technology has entered the stage of practical production and has been widely used in automobile production in more and more countries, but due to the division of elements, the choice of iterative parameters. The modeling of sheet metal, initial value, boundary condition and the setting of the criterion have certain influence on the accuracy and result of simulation. Therefore, the research on the simulation accuracy of finite element software is carried out. It has important theoretical significance and application value to promote sheet metal stamping forming technology and the development of automobile industry in China. In this paper, the forming limit test and numerical simulation of H340LAD_Z niobium microalloyed steel are carried out. On this basis, single factor simulation test analysis and orthogonal simulation test optimization analysis of material properties parameter hardening index (n), yield function index parameter (m) and thickness anisotropy index (r) are carried out. In order to reveal the influence of material parameters on the forming limit diagram and obtain the optimized material parameters, the accuracy of the results is verified by uniaxial tensile experiments. The main research content is: 1, using XJTUDIC three-dimensional digital speckle strain measurement and analysis system to test the forming limit of 9 specimens with different widths designed by GB, taking points from the last picture taken before rupture, and solving the limit strain. Finally, the maximum and minimum principal strain were obtained, and the forming limit diagram of H340LAD_Z niobium microalloyed steel was obtained by Matlab fitting. The forming limit test was simulated by Dynaform software. Two criteria are synthesized: the maximum load criterion is used in the left tension and compression zone, and the strain path criterion is used in the right tension and tension zone. The limit strain data of sheet metal. 3 can be obtained accurately. The influence of yield function exponent parameter m, hardening index n and thickness anisotropy index of sheet metal on forming limit diagram is studied by single factor method. The forming limit curve increases with the increase of the hardening index n, but decreases with the increase of the thickness anisotropy index r and the yield function exponent m. Taking three material parameters as experimental factors, orthogonal experimental design was carried out to study the significance of the influence of each factor level on sheet metal forming limit curve. The results show that the order of influencing factors is as follows: hardening exponent n yield function parameter m thickness anisotropy index r, the optimal material parameter combination is hardening index n 0. 18, yield function exponent parameter m 0. 4, thick anisotropy index r = 0. 9 4. The optimum material parameters are adopted before optimization using Dynaform, respectively. The ultimate strain diagram and ultimate load of the specimen were obtained by numerical simulation of the parameters of the material properties after uniaxial tensile test. Compared with the corresponding results obtained from the uniaxial tensile test, the optimized material parameters are more close to the experimental results. Before uniaxial tensile test and optimization, the relative error of limit strain is 6.2% and 2.5%, and the relative error of limit displacement is 15% and 6.3 respectively. It is concluded that the simulation accuracy of Dynaform software is improved by the optimized set of material performance parameters.
【學(xué)位授予單位】:天津職業(yè)技術(shù)師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TG386

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 盧國清,邱曉剛;成形極限圖的測試、應(yīng)用和可信度分析[J];理化檢驗(yàn)(物理分冊);2002年11期

2 盧國清,邱曉剛,駱中云,陳文龍;成形極限圖的測試、應(yīng)用和可信度分析[J];鋼鐵釩鈦;2002年03期

3 龍衛(wèi)國,金波,湯池;厚向異性薄板成形極限圖的計(jì)算分析[J];南華大學(xué)學(xué)報(bào)(理工版);2001年03期

4 邱曉剛,盧國清,陳文龍,唐暉;坐標(biāo)網(wǎng)分析技術(shù)與成形極限圖的應(yīng)用[J];理化檢驗(yàn)(物理分冊);2002年07期

5 陳煒;郭偉剛;侯波;張家驊;;基于厚度梯度準(zhǔn)則的薄板成形極限圖建立方法[J];中國機(jī)械工程;2007年18期

6 鳳佩華;金屬薄板成形極限圖試驗(yàn)方法[J];汽車技術(shù);1986年01期

7 常志華;于連仲;;成形極限圖的制作方法[J];汽車工藝;1987年04期

8 連建設(shè);周大軍;隋忠祥;薛祥義;劉玉文;譚善錕;王曉玲;余克欽;黃春杰;;汽車薄鋼板塑性成形極限圖的試驗(yàn)研究[J];汽車工藝;1989年06期

9 江健;孔泰;楊松;;獲得成形極限圖的雙板實(shí)驗(yàn)方法[J];鍛壓技術(shù);1989年02期

10 陳光南;沈還;胡世光;;成形極限圖左半部薄板失穩(wěn)行為與極限應(yīng)變——失穩(wěn)過程實(shí)驗(yàn)研究[J];鋼鐵研究;1991年05期

相關(guān)會(huì)議論文 前4條

1 盧國清;邱曉剛;;成形極限圖的測試、應(yīng)用和可信度分析[A];全國材料理化測試與產(chǎn)品質(zhì)量控制學(xué)術(shù)研討會(huì)論文專輯(物理測試部分)[C];2002年

2 陳明和;王東;高霖;左敦穩(wěn);王珉;;基于有限元仿真方法建立成形極限圖[A];中國科協(xié)第二屆優(yōu)秀博士生學(xué)術(shù)年會(huì)材料科學(xué)技術(shù)分會(huì)論文集[C];2003年

3 方健;魏毅靜;王承忠;;薄板成形極限圖(FLD)的多項(xiàng)式擬合分析[A];全國材料理化測試與產(chǎn)品質(zhì)量控制學(xué)術(shù)研討會(huì)論文專輯(物理測試部分)[C];2002年

4 薛玉雷;陳明和;;基于Dynaform的應(yīng)力成形極限圖的應(yīng)用研究[A];第三屆華東六省一市塑性工程學(xué)術(shù)年會(huì)論文集[C];2005年

相關(guān)碩士學(xué)位論文 前7條

1 田麗雯;H340LAD_Z高強(qiáng)度鋼板成形極限圖的構(gòu)建[D];天津職業(yè)技術(shù)師范大學(xué);2016年

2 劉毅;AZ31鎂合金板材熱態(tài)下成形極限圖的試驗(yàn)研究與數(shù)值模擬[D];太原理工大學(xué);2012年

3 馮華云;高強(qiáng)鋼激光拼焊板成形極限圖的試驗(yàn)與預(yù)測研究[D];江蘇大學(xué);2008年

4 閆辰侃;鎂鋁層合板的熱軋成形及熱成形極限圖研究[D];太原理工大學(xué);2014年

5 黃莉莉;鎂鋁復(fù)合板的制備及熱態(tài)成形極限圖的實(shí)驗(yàn)研究[D];太原理工大學(xué);2013年

6 王承鑫;鈦合金及Ti_2AlNb金屬間化合物板材熱成形極限圖[D];哈爾濱工業(yè)大學(xué);2014年

7 龍文寶;鍍鎳鋼帶的應(yīng)力成形極限圖研究與應(yīng)用[D];湘潭大學(xué);2013年



本文編號:2176045

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2176045.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶26009***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com