不等厚AZ31B鎂合金逆變電阻點(diǎn)焊接頭熔核成形及力學(xué)性能研究
[Abstract]:Magnesium alloys have the advantages of high specific strength, good shock absorption, easy processing, stable size and easy recycling. They gradually replace aluminum alloys in automotive, aerospace, electronics and other fields and become ideal materials for structural lightweight and material reuse. The resistance spot welding of magnesium alloys with different thickness has great influence on the welding capacity. Therefore, the research on resistance spot welding of magnesium alloys with different thickness has important guiding significance to improve the quality of welded joints and the load-bearing capacity of welded joints, and promotes the wide application of magnesium alloys in various fields. Methods Inverter resistance spot welding of different thickness AZ31B magnesium alloy sheet (1.0 mm+0.7 mm) was carried out. In order to analyze the effect of welding process on the quality of welded joints of different thickness magnesium alloy sheet, the technological test was carried out with nugget diameter, shear strength, nugget deviation and surface spatter as the evaluation criteria. The optimum process parameters were 13.3 KA welding current, 1.7 KN welding pressure and 90 ms welding time, and the optimum shear resistance of the welded joint was 1936 N. The maximum shear resistance of the welded joint was 1731 N when the welding current was 22.4 KA, the welding pressure was 1.7 KN and the welding time was 100 ms. The best welding parameters are welding current 14.4 KA, welding pressure 1.7 KN, welding time 100 ms, the maximum shear force is 1594 N. Therefore, the quality of welded joints obtained by adding process gaskets on the side of magnesium alloy sheet is better. The results of texture and microhardness analysis show that the microstructure of the joints is mainly composed of columnar dendrite and equiaxed dendrite. The main components are a-Mg solid solution and a-Mg17Al12 eutectic precipitated at grain boundary. The average hardness of columnar dendrite zone and equiaxed dendrite zone is 57.84HV and 57.82HV is higher than 55. At 44HV, the average microhardness of HAZ is 53.94HV, which is lower than that of base metal. The tensile load of resistance spot welding joint of magnesium alloy presents two fracture modes: joint fracture and button fracture, both of which belong to brittle fracture.
【學(xué)位授予單位】:太原科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG453.9
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 尹欣;;FSW焊接AZ31鎂合金板材接頭組織與性能分析[J];熱加工工藝;2016年13期
2 羅磊;奚海峰;高鵬宇;;工藝參數(shù)對AZ31B鎂合金FSW接頭組織與性能的影響[J];現(xiàn)代焊接;2015年12期
3 郭佳萍;徐清錄;;工藝參數(shù)對汽車用鎂合金激光焊接接頭組織和性能的影響[J];熱加工工藝;2015年17期
4 溫彤;劉詩堯;陳世;劉瀾濤;楊臣;;高頻振動對AZ31鎂合金TIG焊接接頭微觀組織與力學(xué)性能的影響(英文)[J];Transactions of Nonferrous Metals Society of China;2015年02期
5 盧立偉;趙俊;劉龍飛;劉天模;;鎂合金沖擊變形行為的研究進(jìn)展[J];兵器材料科學(xué)與工程;2014年05期
6 孫樹東;王聰;;鎂合金脈沖MIG焊研究[J];鑄造技術(shù);2014年09期
7 魏強(qiáng);宋建嶺;蘇再為;張中平;孫志鵬;;不等厚異種鋁合金點(diǎn)焊焊核偏移工藝研究[J];焊接;2014年06期
8 朱智文;蔣曉斌;;AZ31鎂合金電子束焊焊接接頭微觀組織特征[J];熱加工工藝;2014年05期
9 樊水晶;;淺析電阻點(diǎn)焊技術(shù)及其控制方法[J];裝備制造技術(shù);2012年10期
10 陳益平;魏強(qiáng);胡德安;程東海;;AZ31B鎂合金點(diǎn)焊接頭拉剪斷裂特征[J];焊接學(xué)報;2012年05期
相關(guān)碩士學(xué)位論文 前8條
1 霍普;稀土La對AZ91鎂合金組織性能的影響[D];內(nèi)蒙古科技大學(xué);2015年
2 弓雪原;AZ31B鎂合金電阻點(diǎn)焊工藝研究[D];鄭州大學(xué);2013年
3 魏強(qiáng);鎂/鋁異種材料點(diǎn)焊研究[D];南昌航空大學(xué);2012年
4 馬鐵柱;某車正面碰撞車身安全性能研究[D];吉林大學(xué);2012年
5 周鳴;AZ31鎂合金大壓下軋制工藝研究[D];東北大學(xué);2011年
6 林天曉;變形鎂合金激光填絲及激光-電弧復(fù)合焊接工藝研究[D];華中科技大學(xué);2009年
7 林陽陽;AZ31B鎂合金TIG焊及接頭腐蝕性研究[D];吉林大學(xué);2009年
8 湯金蕾;AZ31B鎂合金非熔化極氣體保護(hù)焊工藝[D];北京工業(yè)大學(xué);2009年
,本文編號:2175600
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2175600.html