基于Arcan夾具復(fù)合載荷原位測(cè)試裝置的設(shè)計(jì)與試驗(yàn)研究
[Abstract]:With the development of industrial clusters such as new materials and high-end manufacturing, the requirement of testing technology for material service performance in academia and industry is increasing. The loading of single load mode of traditional testing machine can not meet the market demand. Multi-load miniaturized in-situ testing equipment will be the development direction in the field of material testing in the future. All kinds of engineering materials are not only subjected to a single load during the service period, but the macro and micro failure mechanism of materials under different stress states are very different. In this paper, based on the micromechanical behavior and the mechanism of deformation damage, the design and experimental study of in-situ testing device for composite load of Arcan fixture are carried out, and the arbitrary plane stress state is obtained by improving the Arcan fixture. On this basis, the structure design, instrument adjustment, performance test, characterization and microstructure evolution analysis of the typical material Q235 steel have been completed. The main contents of this paper are as follows: 1. Based on the design and analysis of in-situ testing device for composite load of Arcan fixture, the Arcan fixture is improved to realize the mechanical properties of testing material under plane composite load. The geometric center of the positioning slot supporting the fixture coincides with the geometric center of the fixture in order to ensure the neutrality, The overall size of the test device is 206 mm / 183mm / 53mm, the designed displacement stroke is 0 mm / 8 mm, the displacement resolution is 1 渭 m, the load range is 0 渭 m, the load resolution is 10 mm N, and the in-situ testing device is compatible with the main imaging components such as the mainstream SEMU CCD, etc. Finally, the rationality of the instrument design is proved by theoretical calculation and dynamic and static simulation analysis. Based on the performance test and calibration of the in-situ testing device of Arcan fixture, the electronic control system of the testing device is designed. The communication between each signal of the device and the upper computer is realized. Through the test of 6061 aviation aluminum, it is verified that the test device has good repeatability. In view of the calibration problem of the miniaturized instrument, the error analysis of the test device is carried out. Two kinds of error correction mechanisms are proposed, which provide the theoretical basis for the cause of error and the final correction by combining theory with model. The error correction is carried out by using 3D digital speckle technique, and the rationality and feasibility of the correction method are verified by experiments. The in situ test of Q235 steel was carried out with OLYMPUS DSX500 high field depth microscope. The in situ test of Q235 steel was carried out by using a self made in situ test instrument, and the crack initiation of Q235 steel under different stress states was investigated. It is found that the distribution of the slip band has a great influence on the crack initiation and growth. The slip line density on the lattice surface increases with the increase of the angle, and the microdefects generally germinate at the grain boundary or at the second phase particle. Along with the obvious transgranular phenomenon in the loading process, with the increase of the testing angle, the propagation mechanism changes from normal stress leading to shear stress leading, and the material fracture gradually changes from micropore aggregation fracture to ductile shear fracture. Under the action of 15 擄tension and shear composite load, the stress concentration at the microdefect is concentrated and slowly expands into a strip crack. With the increasing of the load, the surface of the metallographic surface is stripped off slowly, and the surface of the specimen appears fluvial like, and the main crack appears at the root of the distance section. It can be seen that the fracture mechanism of materials under different plane stress states is obviously different, and this device provides a new way of application for exploring the microscopic mechanism of materials.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG75
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳鍶;全國(guó)原位測(cè)試新技術(shù)產(chǎn)品講飛交流會(huì)簡(jiǎn)訊[J];勘察科學(xué)技術(shù);1995年01期
2 Rolf Larsson ,沈進(jìn);在軟土中使用新的原位測(cè)試[J];勘察科學(xué)技術(shù);1994年05期
3 陳居義;某大型水泥廠地基土原位測(cè)試成果及對(duì)比分析[J];勘察科學(xué)技術(shù);2000年02期
4 陳瑩;全國(guó)巖土工程勘察原位測(cè)試新技術(shù)講研會(huì)簡(jiǎn)訊[J];勘察科學(xué)技術(shù);1997年01期
5 曹勉勵(lì);王春艷;李殿海;;原位測(cè)試中分離式油壓千斤頂率定系數(shù)的測(cè)定[J];西部探礦工程;2014年04期
6 魏民;;重慶長(zhǎng)江二橋卵石土地基的原位測(cè)試與評(píng)價(jià)[J];勘察科學(xué)技術(shù);1991年05期
7 李正光,何濤,張同發(fā),黃揚(yáng)一;原位測(cè)試在珠江河口及濱海工程勘察中的應(yīng)用[J];西部探礦工程;2004年11期
8 吳文,徐松林;旁壓儀在巖土工程深部原位測(cè)試中的應(yīng)用[J];巖石力學(xué)與工程學(xué)報(bào);1999年01期
9 吳基文,李煒,樊成,戴建四,林楓,龐迎春;煤層抗拉強(qiáng)度原位測(cè)試研究[J];力學(xué)與實(shí)踐;2001年04期
10 龐迎春;;煤層抗張強(qiáng)度原位測(cè)試研究[J];煤炭技術(shù);2006年10期
相關(guān)會(huì)議論文 前4條
1 林威;馬金龍;;彈性波原位測(cè)試及其在工程勘察中的應(yīng)用[A];1991年中國(guó)地球物理學(xué)會(huì)第七屆學(xué)術(shù)年會(huì)論文集[C];1991年
2 黃金明;;電廠泵房地下結(jié)構(gòu)原位測(cè)試及三維有限元分析[A];上海軟土地區(qū)深基坑技術(shù)新進(jìn)展研討會(huì)論文集[C];2005年
3 黃金明;;電廠泵房地下結(jié)構(gòu)原位測(cè)試及三維有限元分析[A];上海軟土地深基坑技術(shù)新進(jìn)展研討會(huì)論文集[C];2005年
4 李廣信;殷宗澤;閆明禮;;土的基本性質(zhì)和測(cè)試技術(shù)[A];中國(guó)土木工程學(xué)會(huì)第七屆土力學(xué)及基礎(chǔ)工程學(xué)術(shù)會(huì)議論文集[C];1994年
相關(guān)碩士學(xué)位論文 前8條
1 英煥超;基于原位測(cè)試的黃土地基強(qiáng)度與變形參數(shù)研究[D];長(zhǎng)安大學(xué);2015年
2 宋健民;基于AFM的細(xì)胞核力學(xué)特性原位測(cè)試的研究[D];哈爾濱工業(yè)大學(xué);2015年
3 關(guān)鍵;基于Arcan夾具復(fù)合載荷原位測(cè)試裝置的設(shè)計(jì)與試驗(yàn)研究[D];吉林大學(xué);2017年
4 王眾;利用原位測(cè)試數(shù)據(jù)確定浙江省天然地基土承載力的研究[D];浙江大學(xué);2006年
5 劉海明;新型土體抗剪強(qiáng)度參數(shù)原位測(cè)試裝置及原理研究[D];北京交通大學(xué);2012年
6 盛儉;工程地質(zhì)原位測(cè)試儀器的虛擬化研究[D];吉林大學(xué);2005年
7 霍新雯;強(qiáng)夯加固地基承載力與變形模量原位測(cè)試的試驗(yàn)研究[D];沈陽(yáng)建筑大學(xué);2013年
8 劉宏達(dá);拉伸—扭轉(zhuǎn)原位力學(xué)測(cè)試裝置設(shè)計(jì)分析與試驗(yàn)研究[D];吉林大學(xué);2015年
,本文編號(hào):2169920
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2169920.html