高溫合金薄壁葉片銑削加工變形基礎(chǔ)研究
[Abstract]:Blade is one of the core components of aero-engine, and plays an important role in the realization of engine energy conversion. As a kind of typical thin-walled structure, the blade has the problems of deforming the cutter and cutting chatter, which affects the machining accuracy and shortens the service life of the tool. In order to adapt to the high temperature and high pressure environment, the blade materials in the turbine combustor are mostly superalloy. Due to the poor machinability of the superalloy, the complicated surface features of thin-walled blade and the poor rigidity, the machining difficulty of this kind of blade is increased and the machining quality is difficult to guarantee. In this paper, the machining deformation of GH2132 stator blade is studied with milling test and finite element simulation, and the corresponding deformation control strategy is put forward. The main research work of this paper is as follows: (1) two kinds of peak cutting force prediction models, (fzapae) model and (hmap) model, are established by orthogonal test, and the accuracy of the prediction model is verified by experiments The influence of milling parameters on cutting force is studied by single factor test, which provides the basis for the optimization of milling parameters of superalloy, and realizes the rapid selection of cutting parameters by MATLAB programming. (2) based on the prediction model of peak milling force and experimental research, The finite element simulation model of blade machining deformation is established, and the influence of milling parameters and clamping mode on blade machining deformation is obtained by simulation calculation. The rationality of simulation results is verified by engineering mechanics theory analysis. The effectiveness of parameter optimization and clamping optimization is verified by milling thin-walled blade surface. (3) the initial residual stress of GH2132 stator blade blank is measured and evaluated by finite element method and contour method. The stress field distribution of blade blank is obtained by contrast analysis. The results of contour method and finite element method show some agreement. The effect of initial residual stress on blade milling deformation is studied by finite element simulation.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TG54
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 尉淵;劉維偉;李曉燕;李鋒;;高速銑削GH4169切削力及表面粗糙度研究[J];航空制造技術(shù);2014年14期
2 程耀楠;張悅;安碩;劉獻(xiàn)禮;李海超;;航空發(fā)動機(jī)典型零件加工技術(shù)與刀具應(yīng)用分析[J];哈爾濱理工大學(xué)學(xué)報;2014年03期
3 劉襯襯;尹佳;王濤;崔生富;李亮;;鋁合金板淬火應(yīng)力與框形零件變形的數(shù)值分析[J];機(jī)械制造與自動化;2014年01期
4 孫克江;;淺談高溫合金的切削加工[J];科技與企業(yè);2012年01期
5 葛茂杰;孫杰;李劍峰;;石蠟輔助加固鈦合金薄壁件銑削穩(wěn)定性研究[J];山東大學(xué)學(xué)報(工學(xué)版);2011年01期
6 孫玉晶;孫杰;李劍峰;何勇;;銑削參數(shù)對鈦合金薄壁件表面粗糙度和讓刀量的影響[J];粉末冶金材料科學(xué)與工程;2010年06期
7 尚建勤;曾元松;;噴丸成形技術(shù)及未來發(fā)展與思考[J];航空制造技術(shù);2010年16期
8 張永忠;石力開;;高性能金屬零件激光快速成形技術(shù)研究進(jìn)展[J];航空制造技術(shù);2010年08期
9 張曉峰;周凱;趙加清;;薄壁件多點柔性加工的模態(tài)分析與振動控制[J];機(jī)械科學(xué)與技術(shù);2009年05期
10 陳蔚芳;樓佩煌;陳華;;薄壁件加工變形主動補(bǔ)償方法[J];航空學(xué)報;2009年03期
,本文編號:2160850
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2160850.html