熔焊保護(hù)氣體最小用量的研究
[Abstract]:Arc is used as heat source and gas as protective medium. The cost of protective gas is about 10% of the cost of welding process. Therefore, on the basis of ensuring welding quality, how to reduce the amount of protective gas is of great significance to reduce the manufacturing cost and save resources. In this study, theoretical analysis, numerical calculation and experimental verification are used to analyze and discuss the amount of shielding gas. The main contents are as follows: (1) according to the related theory of gas shielded welding, In this paper, the correlation relationship between the parameters of protective gas dosage in welding process is analyzed, the concept of minimum protective gas is put forward, and the mathematical model of minimum amount of protective gas is constructed. (2) according to the mathematical model of minimum quantity of protective gas, the common nozzle is designed. The protected airflow field of four kinds of nozzles are analyzed and calculated by FLUENT software for spiral nozzles, diametral nozzles and diffusive nozzles. The results show that, compared with ordinary nozzles, diameter reduction nozzles and diffusion nozzles can directly reduce the amount of protective gas. The double helix nozzle reduces the amount of protective gas by increasing the residence time of the molten pool. (3) using the UDF and UDS modules in the FLUENT software for secondary development, the arc is imported into the flow field for coupling simulation. The results show that the flow pattern of the plasma shielded gas in the arc region changes greatly, and the shielding gas encapsulation effect is better on the workpiece which is affected by the arc, but there is the phenomenon of shielding gas shrinkage between the welding wire and the surface of the workpiece. Compared with the flow field of the unloaded arc, the results of the minimum gas consumption of the other nozzles except the ordinary nozzles are basically the same. (4) A welding protective gas mixing and matching system is constructed. The welding experiments were carried out with argon 80% carbon dioxide 20% mixed protective gas, four nozzles and different flow rates. The hardness of the base metal, heat affected zone and welding zone of the sample was tested. At the junction of the heat affected zone and the base metal area, the hardness of the weld with three kinds of smaller flux of protective gas was higher than that of the traditional mass weld, and the metallographic structure of the weld was observed. It is found that the grains of double helix nozzle are more uniform and fine. During the tensile test, the samples were broken at the base metal position. The overall results show that the welds with reduced amount of protective gas can meet or even outperform the mechanical properties of the conventional large amount of shielded gas welds. The research is supported by Jiangsu Provincial Science and Technology Innovation Fund, Marine High efficiency Gas shielded Welding Micro dynamic Valve Distribution system (BC2014202). This paper has some guiding significance and reference value for mechanism research and engineering application in welding field.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG444.72
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 彭小飛;馬國紅;張玉剛;平奇文;葉佳;;基于Fluent模擬TIG電弧燃燒[J];熱加工工藝;2016年01期
2 劉金祖;;Ar-CO_2混合氣體保護(hù)焊接技術(shù)應(yīng)用特點(diǎn)解析[J];江西建材;2015年07期
3 路浩;陶傳琦;邢立偉;梁志敏;;鋁合金二元與三元?dú)怏w保護(hù)焊技術(shù)比較[J];焊接學(xué)報(bào);2014年12期
4 賈時(shí)君;;焊接保護(hù)氣體的選擇[J];金屬加工(熱加工);2014年06期
5 張瑞華;李明;栗海霞;王榮;冷小冰;;等離子焊槍氣體保護(hù)效果數(shù)值模擬[J];電焊機(jī);2012年04期
6 孫咸;;焊縫金屬的強(qiáng)度匹配方式及其應(yīng)用[J];現(xiàn)代焊接;2012年01期
7 薛育強(qiáng);史穎;李耀東;蘇斌;陳鵬;;Ar+CO_2混合氣體保護(hù)焊[J];焊接技術(shù);2011年07期
8 朱雙春;王寶森;馬朝暉;許軻;;新型螺旋噴出保護(hù)氣體的焊槍噴嘴設(shè)計(jì)[J];金屬加工(熱加工);2010年04期
9 王健;雷玉成;朱彬;;等離子焊接電弧流場數(shù)值分析[J];焊接;2008年02期
10 殷鳳良;胡繩蓀;高忠林;趙立志;;等離子體電弧數(shù)值模擬的研究進(jìn)展[J];兵器材料科學(xué)與工程;2007年06期
相關(guān)碩士學(xué)位論文 前7條
1 胡翱;微型罩局部干法焊接風(fēng)場結(jié)構(gòu)與電弧特性研究[D];南昌航空大學(xué);2015年
2 柴彤彤;不同氣氛下焊接電弧的模擬研究[D];中北大學(xué);2015年
3 李振團(tuán);S620Q高強(qiáng)厚板焊接過程數(shù)值模擬及實(shí)驗(yàn)研究[D];內(nèi)蒙古科技大學(xué);2015年
4 揣堯;非熔化極焊接電弧仿真研究[D];江蘇科技大學(xué);2015年
5 王小偉;基于磁控技術(shù)MIG焊接熔滴行為的模擬研究[D];南昌航空大學(xué);2013年
6 張通;動(dòng)態(tài)焊接熱源模型的建立及數(shù)值模擬研究[D];河北工業(yè)大學(xué);2013年
7 李海權(quán);Q235鋼閃光焊溫度場分析和焊接接頭性能研究[D];華南理工大學(xué);2012年
,本文編號:2143114
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2143114.html