超高速磨削試驗(yàn)裝備性能評(píng)價(jià)和優(yōu)化
本文選題:超高速磨削 + 有限元。 參考:《南京航空航天大學(xué)》2017年碩士論文
【摘要】:超高速磨削與普通磨削相比具有加工精度高、生產(chǎn)效率高和加工表面質(zhì)量好等優(yōu)點(diǎn),超高速磨削是磨削技術(shù)發(fā)展的趨勢(shì),而要實(shí)現(xiàn)超高速磨削必須要以研制出性能良好的超高速磨床作為其前提和基礎(chǔ)。針對(duì)本課題組目前研制的超高速磨削試驗(yàn)裝備,本文以對(duì)現(xiàn)有機(jī)床性能評(píng)價(jià)和性能優(yōu)化為目的通過(guò)有限元仿真和試驗(yàn)測(cè)試的方法分別對(duì)主軸系統(tǒng)、進(jìn)給系統(tǒng)和整機(jī)結(jié)構(gòu)進(jìn)行了試驗(yàn)測(cè)試和仿真分析,對(duì)機(jī)床性能給出了評(píng)價(jià),發(fā)現(xiàn)機(jī)床的薄弱環(huán)節(jié)并提出了相應(yīng)的改進(jìn)方案,提升了機(jī)床的整體性能。本文完成的主要工作及取得的成果如下:(1)采用Ansys Workbench有限元軟件,建立了電主軸的三維有限元模型,并通過(guò)靜剛度和靜態(tài)錘擊試驗(yàn)驗(yàn)證了仿真模型的可靠性。結(jié)果表明,電主軸具有很高的靜剛度和固有頻率,一階臨界轉(zhuǎn)速遠(yuǎn)高于主軸最高轉(zhuǎn)速,滿足使用要求,研究了軸承預(yù)緊力對(duì)主軸靜剛度和臨界轉(zhuǎn)速的影響規(guī)律。在此基礎(chǔ)上對(duì)電主軸進(jìn)行了高速運(yùn)轉(zhuǎn)測(cè)試,得到了不同速度下電主軸的功耗、溫升、噪聲和振動(dòng)的變化規(guī)律,驗(yàn)證了電主軸高速情況下功耗、溫升、噪聲和振動(dòng)符合工作要求。(2)通過(guò)試驗(yàn)對(duì)進(jìn)給系統(tǒng)在不同速度下的響應(yīng)效率、位置精度、速度跟蹤和延遲特性評(píng)價(jià)指標(biāo)和工作臺(tái)的振動(dòng)進(jìn)行了分析,得到了進(jìn)給系統(tǒng)幾個(gè)性能指標(biāo)都有比較高的水準(zhǔn)并且高速進(jìn)給時(shí)工作臺(tái)振動(dòng)較小;對(duì)3個(gè)方向的進(jìn)給系統(tǒng)進(jìn)行了定位精度檢測(cè)和補(bǔ)償。對(duì)直線電機(jī)進(jìn)給系統(tǒng)進(jìn)行了有限元仿真建模、模態(tài)分析和結(jié)合面參數(shù)識(shí)別,為整機(jī)分析奠定了基礎(chǔ)。(3)基于自制超高速磨削試驗(yàn)裝備整機(jī)有限元模型進(jìn)行了靜力分析、模態(tài)分析和諧響應(yīng)分析,校核了整機(jī)靜剛度和強(qiáng)度,找到整機(jī)的薄弱環(huán)節(jié)主要為砂輪和工作臺(tái);分別針對(duì)減小工作臺(tái)和砂輪振動(dòng)提出了改進(jìn)建議。
[Abstract]:Compared with ordinary grinding, ultra-high speed grinding has the advantages of high machining precision, high production efficiency and good quality of machined surface, and super high speed grinding is the trend of grinding technology development. In order to realize super-high-speed grinding, it is necessary to develop a super-high-speed grinding machine with good performance as its premise and foundation. Aiming at the ultra-high speed grinding test equipment developed by our research group, this paper aims to evaluate and optimize the performance of the existing machine tools by means of finite element simulation and test. The feed system and the structure of the whole machine are tested and simulated. The performance of the machine tool is evaluated. The weak link of the machine tool is found and the corresponding improvement scheme is put forward to improve the overall performance of the machine tool. The main work and achievements are as follows: (1) the 3D finite element model of motorized spindle is established by using Ansys Workbench finite element software, and the reliability of the simulation model is verified by static stiffness and static hammer test. The results show that the motorized spindle has high static stiffness and natural frequency, and the first order critical speed is much higher than the maximum speed of spindle, which meets the requirements of application. The influence of bearing preload on the static stiffness and critical speed of spindle is studied. On this basis, the power consumption, temperature rise, noise and vibration of the motorized spindle are measured at high speed, and the power consumption and temperature rise of the motorized spindle at high speed are verified. Noise and vibration meet the requirements of the work. (2) the response efficiency, position accuracy, velocity tracking and delay characteristics of the feed system under different speeds and the vibration of the worktable are analyzed through experiments. It is obtained that several performance indexes of the feed system are of high level and the vibration of the table is small when the feed is high speed, and the positioning accuracy of the feed system in three directions is detected and compensated. Finite element simulation modeling, modal analysis and parameter identification of the interface of linear motor feed system are carried out. (3) static analysis is carried out on the finite element model of the whole machine based on self-made ultra-high speed grinding test equipment. Modal analysis and harmonic response analysis, check the static stiffness and strength of the whole machine, find that the main weak link of the whole machine is the grinding wheel and the table, and put forward the improvement suggestions for reducing the vibration of the table and wheel respectively.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG580.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 于天彪;王學(xué)智;關(guān)鵬;王宛山;;超高速磨削機(jī)床主軸系統(tǒng)模態(tài)分析[J];機(jī)械工程學(xué)報(bào);2012年17期
2 漆曉軍;;淺談直線電動(dòng)機(jī)[J];應(yīng)用能源技術(shù);2012年07期
3 韓加好;陳穎;;CAK系列數(shù)控車床導(dǎo)軌潤(rùn)滑控制分析及改進(jìn)[J];液壓與氣動(dòng);2011年12期
4 葉云岳;;直線電機(jī)在現(xiàn)代機(jī)床業(yè)中的應(yīng)用與發(fā)展[J];電機(jī)技術(shù);2010年03期
5 宋志勇;商益存;趙金剛;;人造大理石床身在普通數(shù)控磨床中的應(yīng)用[J];精密制造與自動(dòng)化;2008年02期
6 趙嶺;陳五一;馬建峰;;基于結(jié)構(gòu)仿生的高速機(jī)床工作臺(tái)輕量化設(shè)計(jì)[J];組合機(jī)床與自動(dòng)化加工技術(shù);2008年01期
7 郭力;卿啟湘;李波;陽(yáng)超;;超高速數(shù)控精密磨床磁浮軸承主軸單元設(shè)計(jì)[J];新技術(shù)新工藝;2006年01期
8 黃紅武,趙小青,宓海青,賀兵;基于有限元的超高速平面磨床整機(jī)動(dòng)力學(xué)建模及模態(tài)分析[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年04期
9 楊康,韓濤;ANSYS在模態(tài)分析中的應(yīng)用[J];佳木斯大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年01期
10 孫建仁;數(shù)控機(jī)床進(jìn)給伺服系統(tǒng)特性影響加工精度的分析[J];蘭州理工大學(xué)學(xué)報(bào);2004年03期
相關(guān)碩士學(xué)位論文 前3條
1 姜瓊;MKQ8312數(shù)控凸輪軸磨床動(dòng)態(tài)性能分析及結(jié)構(gòu)改進(jìn)研究[D];湖南大學(xué);2007年
2 賀兵;超高速平面磨床的構(gòu)造特征及動(dòng)態(tài)特性研究與結(jié)構(gòu)優(yōu)化[D];湖南大學(xué);2004年
3 杜奕;MSY7115平面磨床的實(shí)驗(yàn)?zāi)B(tài)分析及動(dòng)特性修改[D];昆明理工大學(xué);2002年
,本文編號(hào):2094556
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2094556.html