基于加工動態(tài)特征的復(fù)雜結(jié)構(gòu)件切削參數(shù)優(yōu)化方法
本文選題:復(fù)雜結(jié)構(gòu)件 + 動力學(xué)特性 ; 參考:《南京航空航天大學(xué)》2017年碩士論文
【摘要】:復(fù)雜結(jié)構(gòu)件包含大量薄壁結(jié)構(gòu),加工精度要求高。切削參數(shù)是影響復(fù)雜結(jié)構(gòu)件加工質(zhì)量和加工效率的重要因素。復(fù)雜結(jié)構(gòu)件的加工過程包含大量加工操作,會產(chǎn)生一系列的中間加工狀態(tài),中間加工狀態(tài)的變化導(dǎo)致工件加工動力學(xué)特性不斷發(fā)生變化。針對復(fù)雜結(jié)構(gòu)件的中間加工狀態(tài)進行切削參數(shù)優(yōu)化是需要進行深入研究的重要問題。針對以上提出的問題,本文對基于加工動態(tài)特征的復(fù)雜結(jié)構(gòu)件切削參數(shù)優(yōu)化方法進行了深入研究。研究成果包括:(1)基于加工動態(tài)特征建立了復(fù)雜結(jié)構(gòu)件的加工動力學(xué)模型。建立復(fù)雜結(jié)構(gòu)件加工動力學(xué)模型的基礎(chǔ)是構(gòu)建復(fù)雜結(jié)構(gòu)件的中間加工狀態(tài)幾何及建立加工過程的幾何演化模型,針對加工過程中工件加工動力學(xué)特性隨材料去除而不斷變化的問題,建立了復(fù)雜結(jié)構(gòu)件中間狀態(tài)的加工動力學(xué)模型,為基于加工動態(tài)特征的切削參數(shù)優(yōu)化奠定了基礎(chǔ)。(2)提出了基于加工動態(tài)特征的復(fù)雜結(jié)構(gòu)件切削參數(shù)優(yōu)化方法。根據(jù)數(shù)控加工的實際情況確定了加工過程中影響切削參數(shù)的多種約束條件,并基于加工動態(tài)特征建立了切削參數(shù)的優(yōu)化模型。針對加工過程中工件加工動力學(xué)特性隨加工位置的不同而不斷變化的問題,在建立工件中間加工狀態(tài)的加工動力學(xué)模型的基礎(chǔ)上,實現(xiàn)了復(fù)雜結(jié)構(gòu)件中間加工狀態(tài)下的切削參數(shù)優(yōu)化。(3)研究了基于切削力監(jiān)測數(shù)據(jù)的進給速度調(diào)整方法。針對加工過程中加工余量不同、工件材質(zhì)不均勻等因素引起的加工過程的不穩(wěn)定情況,研究了調(diào)整進給速度的方法。通過實驗建立了加工特征的切削力監(jiān)測數(shù)據(jù)文件,給定加工特征最大銑削力,并通過迭代計算調(diào)整進給速度。(4)基于以上研究開發(fā)了基于加工動態(tài)特征的復(fù)雜結(jié)構(gòu)件切削參數(shù)優(yōu)化系統(tǒng),實驗結(jié)果表明,本文的研究成果可有效提高復(fù)雜結(jié)構(gòu)件的加工效率及加工過程的穩(wěn)定性。
[Abstract]:Complex structural parts contain a large number of thin-walled structures, which require high machining accuracy. Cutting parameters are important factors that affect the machining quality and efficiency of complex structural parts. The machining process of complex structural parts includes a large number of machining operations, which will produce a series of intermediate processing states. The change of intermediate processing state leads to the continuous change of machining dynamic characteristics of workpieces. The optimization of cutting parameters for the intermediate machining state of complex structural parts is an important problem that needs to be deeply studied. Aiming at the above problems, the optimization method of cutting parameters for complex structural parts based on machining dynamic characteristics is studied in this paper. The research results include: (1) based on the dynamic characteristics of machining, the machining dynamics model of complex structural parts is established. The foundation of establishing the machining dynamic model of complex structural parts is to construct the geometry of the intermediate machining state of the complicated structural parts and the geometric evolution model of the machining process. In order to solve the problem that the machining dynamic characteristics of workpiece change with the material removal during the machining process, the machining dynamics model of the intermediate state of complex structural parts is established. The optimization method of cutting parameters for complex structural parts based on machining dynamic characteristics is presented. According to the actual conditions of NC machining, the constraints affecting cutting parameters are determined, and the optimization model of cutting parameters is established based on the dynamic characteristics of machining. In order to solve the problem that the dynamic characteristics of workpiece are changing with the position of machining, the dynamic model of machining state in the middle of workpiece is established. The optimization of cutting parameters under the condition of intermediate machining of complex structural parts is realized. The method of adjusting feed speed based on cutting force monitoring data is studied. Aiming at the instability of machining process caused by different machining allowance and uneven material quality of workpiece, the method of adjusting feed speed is studied. Through experiments, the cutting force monitoring data file of machining feature is established, and the maximum milling force of machining feature is given. Based on the above research, a cutting parameter optimization system for complex structural parts based on machining dynamic characteristics is developed. The experimental results show that, The research results in this paper can effectively improve the machining efficiency and process stability of complex structural parts.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG506
【參考文獻】
相關(guān)期刊論文 前8條
1 牟文平;隋少春;李迎光;;飛機結(jié)構(gòu)件智能數(shù)控加工關(guān)鍵技術(shù)研究現(xiàn)狀[J];航空制造技術(shù);2015年13期
2 劉合群;王志滿;;對機械加工中切削加工及切削顫振的探討[J];價值工程;2015年08期
3 張雪薇;于天彪;王宛山;;薄壁零件銑削三維顫振穩(wěn)定性建模與分析[J];東北大學(xué)學(xué)報(自然科學(xué)版);2015年01期
4 汪通悅;何寧;李亮;;薄壁零件銑削加工的振動模型[J];機械工程學(xué)報;2007年08期
5 武凱,何寧,廖文和,趙威;薄壁腹板加工變形規(guī)律及其變形控制方案的研究[J];中國機械工程;2004年08期
6 王志剛,何寧,武凱,姜澄宇,張平,龔會民,陳雪梅;薄壁零件加工變形分析及控制方案[J];中國機械工程;2002年02期
7 金仁成,李水進,唐小琦,周云飛,童強,賈瑜;智能自適應(yīng)數(shù)控加工技術(shù)研究綜述[J];工具技術(shù);2000年11期
8 薛鴻健,,楊克沖,楊叔子,楊容;切削加工狀態(tài)監(jiān)測技術(shù)的現(xiàn)狀與發(fā)展[J];機械與電子;1995年05期
相關(guān)博士學(xué)位論文 前3條
1 劉長青;基于動態(tài)加工特征的航空結(jié)構(gòu)件智能加工關(guān)鍵技術(shù)[D];南京航空航天大學(xué);2014年
2 李明震;基于完全離散化方法的切削過程穩(wěn)定性預(yù)測研究[D];華中科技大學(xué);2013年
3 汪通悅;薄壁零件銑削穩(wěn)定性數(shù)值仿真及實驗研究[D];南京航空航天大學(xué);2010年
相關(guān)碩士學(xué)位論文 前2條
1 謝金華;基于智能控制策略的切削顫振抑制研究[D];山東大學(xué);2013年
2 王海龍;機床顫振分析及抑制方法研究[D];哈爾濱工程大學(xué);2013年
本文編號:2050109
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2050109.html