重載鍛造操作機大車行走精度控制的研究
本文選題:鍛造操作機 + 大車行走; 參考:《蘭州交通大學(xué)》2017年碩士論文
【摘要】:重載鍛造操作機作為鍛造工業(yè)中一個必不可少的設(shè)備,其作用不可替代。大型有軌鍛造操作機的一個重要功能就是它的行走功能,操作機行走機構(gòu)組成的合理性以及優(yōu)劣程度會直接影響到操作機運動的精準(zhǔn)性和穩(wěn)定性。其行走機能的好壞對其工作效率和工件的加工質(zhì)量都有著很大的影響。如何使大型聯(lián)動快鍛操作機的機械、液壓部分質(zhì)量小,運行機構(gòu)起動、制動精確平穩(wěn),快速響應(yīng)好,該研究對鍛造操作機及重大裝備制造業(yè)的發(fā)展有著重要的意義。論文依據(jù)現(xiàn)有鍛造操作機的三維實體模型,研究了操作機在起動和制動兩種工況下大車所受作用力以及動態(tài)數(shù)據(jù)變化。通過分析制動工況下操作機大車行走部的作用力以及相關(guān)數(shù)據(jù)的計算,提出分級降速制動的方案來解決大車行走精度偏大的問題。計算了從最高行駛速度開始制動到停車,所產(chǎn)生的位移以及時間;在保證精度的前提下,降低制動速度,計算出第一次降速的值,即制動初速度。對銷齒齒輪強度進(jìn)行校核計算,以確保銷齒齒輪與銷軸齒條的強度能夠承受大車從最高速度制動時所產(chǎn)生慣性力。分析鍛造操作機大車行走部蓄能器,結(jié)果表明蓄能器充氣壓力與工作壓力的合理選取對液壓系統(tǒng)的影響非常大,依據(jù)行走精度要求及相關(guān)液壓元件的工作壓力重新計算并選取合適型號的蓄能器。分析制動工況下管道內(nèi)液壓油所產(chǎn)生的液壓沖擊對操作機控制精度的影響,結(jié)果表明管道中液體的流速會直接影響液壓系統(tǒng)內(nèi)部工作壓力的升高,為分級降速的制動方案提供了依據(jù)。分析操作機大車行走部的液壓控制系統(tǒng),利用AMESim對鍛造操作機大車行走液壓系統(tǒng)進(jìn)行建模仿真分析,在快鍛和常鍛兩種工況下,給定大車多組不同的進(jìn)給位移信號,輸出對應(yīng)的操作機進(jìn)給位移的動態(tài)特性曲線和速度的動態(tài)特性曲線。分析每組位移特性響應(yīng)曲線的最大超調(diào)量、調(diào)整時間、峰值時間、上升時間等數(shù)據(jù),得知大車行走精度與進(jìn)給距離以及速度之間的關(guān)系。當(dāng)進(jìn)給距離增大時,致使大車行駛速度增大,慣量增大,導(dǎo)致進(jìn)給位移動態(tài)特性曲線的最大超調(diào)量超過±10mm的范圍。必須嚴(yán)格控制大車的進(jìn)給位移,才可以保證行走精度達(dá)到預(yù)定要求,才可以實現(xiàn)操作機與主機的聯(lián)動控制。同時,仿真結(jié)果的分析也再一次驗證了分級降速制動方案的可行性以及合理性。
[Abstract]:As an indispensable equipment in forging industry, heavy-duty forging operator can not be replaced. One of the important functions of large rail forging operator is its walking function. The reasonableness and quality of the operating mechanism will directly affect the accuracy and stability of the movement of the manipulator. Its walking function has great influence on its working efficiency and workpiece processing quality. It is of great significance for the development of forging operators and major equipment manufacturing industry to study how to make the machinery of large-scale linkage rapid forging machine with small hydraulic mass, starting mechanism, accurate and stable braking, and good rapid response. According to the 3D solid model of the existing forging operator, this paper studies the force and dynamic data change of the vehicle under the two working conditions of starting and braking. Based on the analysis of the force acting on the moving part of the vehicle and the calculation of the relevant data under the braking condition, the scheme of graded deceleration braking is put forward to solve the problem of the larger precision of the vehicle. The displacement and time generated from braking to stopping at the maximum speed are calculated, and the braking speed is reduced on the premise of ensuring accuracy, and the first deceleration speed is calculated. The strength of pin-tooth gear is checked and calculated to ensure that the strength of pin-tooth gear and pin-shaft rack can withstand the inertial force produced by braking from the top speed of the cart. The analysis of the accumulator in the moving part of the forging manipulator shows that the reasonable selection of the charging pressure and the working pressure of the accumulator has a great influence on the hydraulic system. Recalculate and select the appropriate type accumulator according to the requirements of walking precision and the working pressure of the hydraulic components concerned. The influence of hydraulic impact of hydraulic oil in pipeline on the control accuracy of the manipulator under braking condition is analyzed. The results show that the velocity of liquid in the pipeline will directly affect the increase of working pressure in the hydraulic system. It provides the basis for the braking scheme of step-down speed reduction. This paper analyzes the hydraulic control system of the moving part of the large truck of the operator, and makes use of AMESim to model and simulate the hydraulic system of the forging operator. Under the two working conditions of fast forging and constant forging, several groups of different feed displacement signals are given. The dynamic characteristic curve of the feed displacement and the dynamic characteristic curve of the velocity are outputted. The maximum overshoot, adjustment time, peak time and rising time of each group of displacement characteristic response curves are analyzed, and the relationship between the moving precision and the feeding distance and speed of the cart is obtained. When the feed distance increases, the driving speed and inertia increase, which leads to the maximum overshoot of the dynamic characteristic curve of feed displacement exceeding the range of 鹵10mm. It is necessary to strictly control the feed displacement of the cart in order to ensure that the precision of the vehicle can meet the predetermined requirements and to realize the linkage control between the operator and the main engine. At the same time, the analysis of simulation results also verifies the feasibility and rationality of the step-down braking scheme.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG315
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 牛勇;權(quán)曉惠;張營杰;李淼泉;;現(xiàn)代自由鍛造裝備技術(shù)研究現(xiàn)狀與發(fā)展趨勢[J];精密成形工程;2015年06期
2 徐明;胡國良;傅新;;鍛造操作機液壓緩沖系統(tǒng)建模與仿真研究[J];機床與液壓;2015年11期
3 郭加寧;鄧子龍;韋麗娃;;鍛造操作機大車行走液壓控制系統(tǒng)仿真研究[J];機械與電子;2015年05期
4 薛春蘭;周峰;慕澤坤;;1800kN快速鍛造操作機大車行進(jìn)控制系統(tǒng)研究[J];鍛壓裝備與制造技術(shù);2015年01期
5 衛(wèi)凌云;張營杰;牛勇;馮東曉;杜學(xué)斌;;大型有軌鍛造操作機行走機構(gòu)設(shè)計[J];鍛壓裝備與制造技術(shù);2014年06期
6 李衛(wèi)旗;馬慶賢;;摩擦行為在鍛造過程中的研究現(xiàn)狀與進(jìn)展[J];鍛壓技術(shù);2014年06期
7 周斌;李閣強;江兵;馬淑葉;;20t鍛造操作機大車行走液壓控制系統(tǒng)設(shè)計[J];液壓與氣動;2014年06期
8 郭銳;唱榮蕾;趙靜一;布丹;李小剛;;液壓制動系統(tǒng)蓄能器充液特性研究[J];農(nóng)業(yè)機械學(xué)報;2014年07期
9 徐響;韓露;郭賀賀;;大型自由鍛造液壓機的技術(shù)特點分析[J];中國高新技術(shù)企業(yè);2014年04期
10 ZHANG Pu;YAO Zhenqiang;DU Zhengchun;;Impedance Analysis of Forging Process and Strategy Study on Compliance for Forging Manipulator[J];Chinese Journal of Mechanical Engineering;2013年04期
相關(guān)博士學(xué)位論文 前2條
1 褚曉兵;重載鍛造操作機性能評價與標(biāo)定方法研究[D];上海交通大學(xué);2012年
2 王國志;電液比例軸向變量柱塞泵的特性研究[D];西南交通大學(xué);2009年
相關(guān)碩士學(xué)位論文 前5條
1 劉銘達(dá);基于AMESim的EHA主動懸架建模與控制研究[D];蘭州交通大學(xué);2016年
2 戎雪玲;鍛造操作機鉗口結(jié)構(gòu)的優(yōu)化設(shè)計[D];蘭州交通大學(xué);2016年
3 楊青松;重載鍛造操作機緩沖機理及動態(tài)特性研究[D];重慶大學(xué);2013年
4 趙凱;鍛造操作機緩沖過程仿真與順應(yīng)性評價[D];上海交通大學(xué);2009年
5 劉海麗;基于AMESim的液壓系統(tǒng)建模與仿真技術(shù)研究[D];西北工業(yè)大學(xué);2006年
,本文編號:1997214
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1997214.html