心血管支架用可降解Mg-Y-Zn-Zr合金組織及性能研究
本文選題:Mg-Y-Zn-Zr合金 + 顯微組織。 參考:《太原理工大學(xué)》2017年碩士論文
【摘要】:冠心病是危害人類健康的重大疾病之一,在動(dòng)脈血管中植入支架是治療冠心病的常用方法。鎂合金具有良好的生物相容性和自發(fā)降解性,使其成為血管支架的理想材料。但是鎂合金也存在著強(qiáng)度較低、耐腐蝕性能較差等缺點(diǎn),制約了其在臨床上的應(yīng)用。本文旨在開(kāi)發(fā)性能優(yōu)異的新型可降解鎂合金血管支架材料。本實(shí)驗(yàn)選用生物安全性良好的Zn、Y、Zr元素作為合金化元素,通過(guò)常規(guī)鑄造法制備了Mg-xY-3Zn-0.4Zr(x=0,1,2,3,4 wt.%)合金和Mg-2Y-yZn-0.4Zr(y=0,1,2,4,5 wt.%)合金,并對(duì)優(yōu)選出的最佳成分合金進(jìn)行熱處理。采用OM、SEMEDS、XRD、失重法、析氫法、電化學(xué)測(cè)試和室溫拉伸等方法,對(duì)比研究了Y、Zn元素及熱處理工藝對(duì)合金顯微組織、力學(xué)性能和耐腐蝕性能的影響。實(shí)驗(yàn)結(jié)果表明:添加Y元素能夠顯著細(xì)化合金晶粒。Mg-3Zn-0.4Zr合金主要由α-Mg和小顆粒狀Mg0.97Zn0.03相組成;當(dāng)Y含量為1 wt.%時(shí)合金中出現(xiàn)長(zhǎng)條狀Mg3YZn6相(I相);當(dāng)Y含量為2 wt.%時(shí)合金中出現(xiàn)魚(yú)骨狀Mg3Y2Zn3相(W相)。少量Y的加入,促進(jìn)I相的形成,I相與Mg基體電位差較小,形成的微電池?cái)?shù)量減少。此外,Y元素與合金中的Fe、Mn等雜質(zhì)元素形成金屬間化合物,提純?nèi)垡?改善合金的耐腐蝕性能。過(guò)量Y的加入形成硬脆的W相呈網(wǎng)狀分布在晶界上,W相與鎂基體結(jié)合鍵較弱,易產(chǎn)生微裂紋。且第二相數(shù)量較多時(shí),合金產(chǎn)生嚴(yán)重的偏析現(xiàn)象,降低合金的力學(xué)性能。Mg-2Y-3Zn-0.4Zr合金表現(xiàn)出最佳的綜合性能。與Y元素相比,添加Zn元素對(duì)合金的晶粒細(xì)化作用有限。Mg-2Y-0.4Zr合金主要由α-Mg基體和Mg24Y5相組成;Mg-2Y-1Zn-0.4Zr合金由α-Mg基體和I相組成;繼續(xù)增加Zn含量,合金中出現(xiàn)W相。微量的Zn元素能提高基體腐蝕電位,提高合金耐腐蝕性能。Zn溶入Mg基體中,產(chǎn)生固溶強(qiáng)化。過(guò)量的Zn產(chǎn)生大量的第二相,增加了合金電偶腐蝕的傾向。硬脆的W相聚集甚至割裂基體,降低合金力學(xué)性能。因此,隨著Zn含量的增加,合金的耐腐蝕性能和力學(xué)性能均呈現(xiàn)出先增加后降低的趨勢(shì)。Mg-2Y-1Zn-0.4Zr合金表現(xiàn)出最佳的綜合性能。在熱處理過(guò)程中,Mg-2Y-1Zn-0.4Zr合金的晶粒發(fā)生了一定程度的長(zhǎng)大現(xiàn)象;熱處理未改變合金的相組成(α-Mg基體和I相),長(zhǎng)條狀I(lǐng)相轉(zhuǎn)變?yōu)轭w粒狀,均勻分布在基體上。T4-10態(tài)合金中大部分I相溶解,減少了合金中的微電池?cái)?shù)量,耐腐蝕性能增強(qiáng)。T4-30態(tài)合金由于保溫時(shí)間太長(zhǎng),晶粒嚴(yán)重粗化,總晶界面積減小,晶界對(duì)位錯(cuò)的阻礙作用減弱,且晶界上難熔的雜質(zhì)密度增大,性能降低。時(shí)效處理后,基體上析出細(xì)小彌散分布的I相,起到彌散強(qiáng)化的作用。此外,析出相均勻分布在基體上,降低了局部腐蝕的傾向,耐腐蝕性能增強(qiáng)。本研究中,T6態(tài)綜合性能最佳:失重平均腐蝕速率為0.189 mm/a,抗拉強(qiáng)度為258 MPa,屈服強(qiáng)度為144 MPa,伸長(zhǎng)率為15.5%。該結(jié)果基本滿足支架材料對(duì)力學(xué)性能和耐腐蝕性能的要求。
[Abstract]:Coronary artery disease (CHD) is one of the major diseases that endanger human health. Stent implantation in arterial vessels is a commonly used method in the treatment of coronary artery disease (CHD). Magnesium alloy has good biocompatibility and spontaneous degradation, which makes it an ideal material for vascular stent. However, magnesium alloys also have some disadvantages, such as low strength and poor corrosion resistance, which restrict their clinical application. The aim of this paper is to develop new degradable magnesium alloy vascular scaffolds with excellent performance. In this experiment, the Zn-ZY Zr alloy, which has good biological safety, was used as alloying element. Mg-xY-3Zn-0.4ZrxOZn-0.4ZrxCX 4wt.) alloy and Mg-2Y-YZn-0.4ZryZn-0.4ZryZn-0.4ZryZn-0.4ZryZn-0.4ZryZn-45wt.) alloy were prepared by conventional casting method, and the best component alloys were heat-treated. By means of OMSEMEDS XRD, weightlessness, hydrogen evolution, electrochemical measurement and room temperature tensile test, the effects of Y _ (Zn) and heat treatment on the microstructure, mechanical properties and corrosion resistance of the alloy were studied. The experimental results show that the addition of Y element can significantly refine the grain size of the alloy. Mg-3Zn-0.4Zr alloy mainly consists of 偽 -Mg and small granular Mg0.97Zn0.03 phase. When Y content is 1 wt.%, long stripe Mg3YZn6 phase I phase is found in the alloy, and fishbone Mg3Y2Zn3 phase W phase is found in the alloy when Y content is 2 wt.%. The addition of a small amount of Y promoted the formation of phase I and the potential difference between phase I and mg matrix was smaller, and the number of formed microbatteries decreased. In addition, Y element forms intermetallic compound with impurity elements such as Feo mn in the alloy to purify the melt and improve the corrosion resistance of the alloy. The hard and brittle W phase was formed by the addition of excess Y, and the bonding bond between W phase and magnesium matrix was weak on the grain boundary, resulting in microcracks easily. When the number of the second phase is higher, serious segregation occurs, and the mechanical properties of the alloy. Mg-2Y-3Zn-0.4Zr alloy shows the best comprehensive properties. Compared with Y element, the effect of Zn addition on grain refinement is limited. Mg-2Y-0.4Zr alloy is mainly composed of 偽 -Mg matrix and Mg24Y5 phase, which consists of 偽 -Mg matrix and I phase, and W phase appears in the alloy with increasing Zn content. Trace Zn element can increase the corrosion potential of the matrix and improve the corrosion resistance of the alloy. Zn is dissolved into the mg matrix, resulting in solid solution strengthening. Excessive Zn produces a large number of secondary phases, which increases the tendency of galvanic corrosion of the alloy. The hard and brittle W phase aggregates and even cleans the matrix, which reduces the mechanical properties of the alloy. Therefore, with the increase of Zn content, the corrosion resistance and mechanical properties of the alloy increased first and then decreased. Mg-2Y-1Zn-0.4Zr alloy showed the best comprehensive properties. The grain size of Mg-2Y-1Zn-0.4Zr alloy grew to a certain extent during heat treatment, and the phase composition (偽 -Mg matrix and I phase) was not changed after heat treatment. The dissolution of most of phase I in the matrix. T4-10 alloy reduces the number of microbatteries in the alloy. The corrosion resistance of the alloy is enhanced. Due to the long holding time, the grain size is coarsened and the total grain boundary area is decreased. The hindrance of the grain boundary to the dislocation is weakened, and the impurity density on the grain boundary increases and the performance decreases. After aging treatment, I phase was precipitated from the matrix, which played the role of dispersion strengthening. In addition, the precipitation phase is uniformly distributed on the matrix, which reduces the tendency of local corrosion and enhances the corrosion resistance. In this study, the comprehensive performance of T6 state is the best: the average weight loss corrosion rate is 0.189 mm / a, the tensile strength is 258MPa, the yield strength is 144MPa, and the elongation is 15.5 mm / a. The results basically meet the requirements of mechanical properties and corrosion resistance of scaffolds.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG146.22;R318.08
【相似文獻(xiàn)】
相關(guān)會(huì)議論文 前10條
1 劉近朱;歐陽(yáng)明安;馬勵(lì);張國(guó)威;歐陽(yáng)錦林;;含硫鎳基高溫自潤(rùn)滑合金的研究(1)[A];第一屆全國(guó)青年摩擦學(xué)學(xué)術(shù)會(huì)議論文集[C];1991年
2 曾建民;周懷營(yíng);孫仙奇;周開(kāi)文;;Al7Si0.3Mg合金的合金化原理及性能[A];第十屆全國(guó)相圖學(xué)術(shù)會(huì)議論文集[C];2000年
3 周曉松;彭述明;郝萬(wàn)立;龍興貴;李宏發(fā);羅順忠;;Zr_3V_3O合金的結(jié)構(gòu)及吸放氘性能研究[A];第八屆全國(guó)核靶技術(shù)學(xué)術(shù)交流會(huì)論文摘要集[C];2004年
4 黃國(guó)杰;謝水生;米緒軍;李華清;;高速鐵路用Cu-Cr-Zr合金的研究[A];中國(guó)有色金屬學(xué)會(huì)第十二屆材料科學(xué)與合金加工學(xué)術(shù)年會(huì)論文集[C];2007年
5 徐麗娟;肖樹(shù)龍;陳玉勇;;Mo含量對(duì)牙科用Ti-Mo合金顯微組織及性能的影響[A];第六屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(5)[C];2007年
6 柳瑞清;劉東輝;胡斐斐;劉羽飛;;Si含量對(duì)鑄態(tài)C72500合金的組織及性能影響[A];中國(guó)有色金屬學(xué)會(huì)第十四屆材料科學(xué)與合金加工學(xué)術(shù)年會(huì)論文集[C];2011年
7 王本力;李莉;鄭玉峰;;生物醫(yī)用Ti-Nb基合金的顯微組織與耐磨性[A];第十四屆全國(guó)鈦及鈦合金學(xué)術(shù)交流會(huì)論文集(下冊(cè))[C];2010年
8 冒國(guó)兵;張光勝;孫宇峰;劉琪;余小魯;;Mg-5Al-xY合金的鑄態(tài)組織及力學(xué)性能[A];第十三屆21省(市、區(qū))4市鑄造會(huì)議暨第七屆安徽省鑄造技術(shù)大會(huì)論文集[C];2012年
9 李霞;趙棟梁;張羊換;許劍軼;胡鋒;張胤;;球磨La_2Mg_(17)與Ni復(fù)合合金的電化學(xué)貯氫性能研究[A];第十七屆(2013年)全國(guó)冶金反應(yīng)工程學(xué)學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];2013年
10 熱焱;曲迎東;邱克強(qiáng);;Sb對(duì)Mg-4Si合金中Mg_2Si相形貌與結(jié)構(gòu)的影響[A];創(chuàng)新裝備技術(shù) 給力地方經(jīng)濟(jì)——第三屆全國(guó)地方機(jī)械工程學(xué)會(huì)學(xué)術(shù)年會(huì)暨海峽兩岸機(jī)械科技論壇論文集[C];2013年
相關(guān)重要報(bào)紙文章 前2條
1 李有觀;日本研制出兩種新鈦合金[N];中國(guó)有色金屬報(bào);2002年
2 王祝堂;航空航天鋁合金發(fā)展的里程碑(二)[N];中國(guó)有色金屬報(bào);2012年
相關(guān)博士學(xué)位論文 前10條
1 胡光山;Y和Nd對(duì)Mg-Zn-Mn-Sn系變形鎂合金組織和性能的影響[D];重慶大學(xué);2015年
2 魯若鵬;Mg-Zn-Y合金中LPSO相的調(diào)控及其對(duì)阻尼和力學(xué)性能的影響機(jī)制研究[D];重慶大學(xué);2015年
3 萬(wàn)剛;鎂合金變形組織、織構(gòu)的演變規(guī)律及其力學(xué)行為研究[D];南京航空航天大學(xué);2012年
4 李亞瓊;Si-Al(-Sn)合金凝固精煉過(guò)程中硼雜質(zhì)分凝行為的研究[D];大連理工大學(xué);2015年
5 呂麗君;釷基熔鹽堆氚吸附與儲(chǔ)存用LaNi_(4.25)Al_(0.75)和ZrCo合金性能改進(jìn)研究[D];中國(guó)科學(xué)院研究生院(上海應(yīng)用物理研究所);2016年
6 楊亮;鑄造高Nb-TiAl合金成分優(yōu)化及其精密鑄造工藝研究[D];北京科技大學(xué);2016年
7 石澤德(Shahzad Salam);MCrAlY型涂層合金成分對(duì)合金相變和高溫氧化壽命的影響[D];清華大學(xué);2015年
8 楊勇彬;Ti-V-Cr合金的反氫同位素效應(yīng)[D];中國(guó)工程物理研究院;2016年
9 龐S,
本文編號(hào):1973650
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1973650.html