AZ31表面含鈰疏水涂層制備及腐蝕行為研究
本文選題:鎂合金 + 稀土鈰; 參考:《哈爾濱工業(yè)大學(xué)》2017年碩士論文
【摘要】:在鎂合金表面制備疏水涂層是目前一種研究廣泛的防護(hù)手段;眾多研究表明稀土鈰的緩蝕性在鎂合金上作用明顯。本實(shí)驗(yàn)采用陰極電沉積的方法直接在AZ31鎂合金表面制備出單一的十四酸鈣和十四酸鈰以及鈣鈰混合的疏水涂層,涂層的存在顯著提高了鎂合金的腐蝕性能。通過(guò)研究制備工藝參數(shù)(沉積電壓和沉積時(shí)間)對(duì)單一Ca鹽(或Ce鹽)涂層形態(tài)以及腐蝕行為的影響,以及Ca-Ce復(fù)合涂層沉積時(shí)間比和Ca-Ce摩爾比對(duì)Ca-Ce復(fù)合涂層的形態(tài)及腐蝕行為的影響,發(fā)現(xiàn)涂層的制備工藝參數(shù)顯著影響涂層的形貌及腐蝕性能,但并不影響涂層的物相組成。Ca鹽涂層的物相組成為(CH3(CH2)12COO)2Ca,Ce鹽涂層的物相是由(CH3(CH2)12COO)4Ce和(CH3(CH2)12COO)3Ce組成的。研究結(jié)果表明,沉積電壓為50V時(shí),無(wú)論是單一Ca鹽涂層還是Ce鹽涂層,其耐蝕性能最好;對(duì)于單一Ca鹽涂層,沉積時(shí)間越長(zhǎng),其耐蝕性能越優(yōu)異;對(duì)于單一Ce鹽涂層,沉積時(shí)間60min時(shí)的耐蝕性能最好。當(dāng)在50V電壓下沉積60min,且Ca-Ce沉積時(shí)間比為2:1,摩爾比為99:1時(shí)制得的疏水涂層(即99Ca-1Ce涂層)耐蝕性能最佳,點(diǎn)蝕電位可達(dá)0.94V,比耐蝕性較好的Ca鹽涂層的點(diǎn)蝕電位還高出0.61V,且其在浸泡11d后才出現(xiàn)點(diǎn)蝕坑。99Ca-1Ce涂層具備優(yōu)良的疏水性能,且其厚度最大,與基體之間的結(jié)合力也是所有涂層中最強(qiáng)的,可見(jiàn)Ce的加入提升了Ca鹽涂層的厚度、疏水性能以及涂層與基體的結(jié)合力,并進(jìn)而提高了涂層的耐蝕性;但Ce含量過(guò)多會(huì)增加涂層缺陷,降低涂層與基體之間的結(jié)合力并影響其緩蝕作用的發(fā)揮,從而降低涂層的耐蝕性能。在含Ce的電解液中,由于離子遷移存在一個(gè)快慢順序,Ce4+Ce3+Ca2+,而Ca2+一直存在于溶液中,故在涂層沉積后階段實(shí)際發(fā)生的是Ca鹽和Ce鹽的共沉積。(CH_3(CH_2)_(12)COO)_2Ca涂層在Na Cl溶液的浸泡過(guò)程中可轉(zhuǎn)化為(CH3(CH2)12COO)2Ca·4H2O,Ce鹽涂層在浸泡過(guò)程中物相不發(fā)生轉(zhuǎn)變。在長(zhǎng)時(shí)間的浸泡下,由于涂層的溶解與脫落,基體遭受腐蝕,腐蝕產(chǎn)物為Mg(OH)_2。
[Abstract]:The preparation of hydrophobic coatings on magnesium alloys is a widely studied means of protection, and many studies show that the corrosion inhibition of rare earth cerium on magnesium alloys is obvious. In this experiment, a single hydrophobic coating of calcium tetradecrate, cerium tetradecanoate and cerium tetradecanoate was prepared directly on the surface of AZ31 magnesium alloy by cathodic electrodeposition, and the corrosion resistance of magnesium alloy was greatly improved by the existence of the coating. The effect of process parameters (deposition voltage and deposition time) on the morphology and corrosion behavior of single Ca salt (or ce salt) coating was studied. The effect of deposition time ratio of Ca-Ce composite coating and Ca-Ce molar ratio on morphology and corrosion behavior of Ca-Ce composite coating was also studied. It was found that the preparation process parameters of the coating significantly affected the morphology and corrosion performance of the coating. However, the phase composition of the coating does not affect the phase composition of the coating. The phase composition of the coating is that of the Ch _ 3H _ 3H _ 2o _ (12) COO _ (2) Ca _ (Ce) coating, which is composed of Ch _ (3) (Ch _ (2), Ch _ (2), (12COO) _ (4Ce) and Ch _ (3H _ (3) Ch _ (2) O _ (2) O _ (12) COO _ (3Ce). The results show that the corrosion resistance of the single Ca salt coating and ce salt coating is the best when the deposition voltage is 50 V, the longer the deposition time is, the better the corrosion resistance is for the single ce salt coating, and the better the corrosion resistance is for the single ce salt coating, the longer the deposition time is, the better the corrosion resistance is. The corrosion resistance of 60min is the best. When the deposition time ratio of Ca-Ce is 2: 1 and the molar ratio is 99:1, the hydrophobic coating (i.e. 99Ca-1Ce coating) has the best corrosion resistance. The pitting potential can reach 0.94V, which is higher than that of Ca salt coating with better corrosion resistance, and the pitting pit. 99Ca-1Ce coating has excellent hydrophobicity and its thickness is the largest. The adhesion between the coating and the substrate is also the strongest. It can be seen that the addition of ce enhances the thickness, hydrophobic property and adhesion between the coating and the substrate, and thus improves the corrosion resistance of the coating. However, excessive ce content will increase the coating defects, reduce the adhesion between the coating and the substrate, and affect the exertion of corrosion inhibition, thus reducing the corrosion resistance of the coating. In the electrolyte containing ce, there is a slow and fast sequence of ce 4 Ce3 Ca2 due to ion migration, while Ca2 exists in the solution all the time. Therefore, in the post-coating stage, the codeposition of Ca salt and ce salt is actually. Ch _ 3H _ 3H _ 2H _ 2 / C _ (12) COO _ (2H) 2Ca coating can be transformed into Ch _ 3H _ 2H _ 2CO _ 2O _ 2Ca _ 4H _ e salt coating during immersion in NaCl solution, and the phase does not change during soaking. After immersion for a long time, the substrate was corroded due to the dissolving and shedding of the coating, and the corrosion product was MgOH-2.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TG174.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高志恒;;鎂合金的腐蝕特性及防護(hù)技術(shù)[J];表面技術(shù);2016年03期
2 章玨;鄭鑫;梁金;劉紅霞;張小聯(lián);;鎂合金陽(yáng)極氧化電解液優(yōu)化及膜性能研究[J];電鍍與精飾;2014年09期
3 王栓強(qiáng);;鎂合金腐蝕與防護(hù)研究進(jìn)展[J];全面腐蝕控制;2013年02期
4 YANG Wei;WANG Ai-ying;JIANG Bai-ling;;Corrosion resistance of composite coating on magnesium alloy using combined microarc oxidation and inorganic sealing[J];Transactions of Nonferrous Metals Society of China;2012年S3期
5 亢海娟;李全安;周偉;;鎂合金的腐蝕特性與防護(hù)措施[J];腐蝕科學(xué)與防護(hù)技術(shù);2012年06期
6 王麗;付文;陳礪;;鎂合金腐蝕防護(hù)技術(shù)研究進(jìn)展[J];電鍍與精飾;2012年09期
7 宋東福;農(nóng)登登;戚文軍;龍思遠(yuǎn);陶登軍;;鎂合金復(fù)合有機(jī)涂層的研究現(xiàn)狀與展望[J];材料研究與應(yīng)用;2012年02期
8 李均明;薛曉楠;王愛(ài)娟;馬安博;符致昭;;鎂合金微弧氧化預(yù)處理化學(xué)鍍鎳研究[J];中國(guó)腐蝕與防護(hù)學(xué)報(bào);2012年01期
9 陳名華;郭必新;汪定江;葛文軍;;疏水疏冰涂層的研究進(jìn)展[J];電鍍與涂飾;2011年07期
10 席俊杰;黨旭丹;;新型鎂合金及其熱處理和表面改性技術(shù)[J];金屬熱處理;2011年02期
相關(guān)會(huì)議論文 前1條
1 張玉峰;;稀土Ni-P-Ce復(fù)合刷鍍層結(jié)構(gòu)及工藝研究[A];第六屆全國(guó)表面工程學(xué)術(shù)會(huì)議論文集[C];2006年
相關(guān)博士學(xué)位論文 前1條
1 徐永東;稀土鎂合金組織和性能研究[D];天津大學(xué);2012年
相關(guān)碩士學(xué)位論文 前7條
1 董秋實(shí);AZ31鎂合金表面預(yù)處理對(duì)鈣磷涂層腐蝕性能的影響[D];哈爾濱工業(yè)大學(xué);2016年
2 董釗;SiO_2/PVA(聚乙烯醇)涂層的表面潤(rùn)濕性研究[D];吉林大學(xué);2015年
3 劉歡歡;純鎂表面有機(jī)超疏水層的制備及腐蝕行為[D];哈爾濱工業(yè)大學(xué);2014年
4 劉歡;AZ31鎂合金表面水熱合成羥基磷灰石膜層的研究[D];太原理工大學(xué);2013年
5 鐘顯康;鎂合金表面耐蝕性溶膠—凝膠膜層的制備與修復(fù)研究[D];西南大學(xué);2010年
6 姜鵬;AZ91D鎂合金表面化學(xué)轉(zhuǎn)化及溶膠—凝膠技術(shù)制備復(fù)合涂層研究[D];哈爾濱工程大學(xué);2008年
7 張剛;陰極電沉積法在鈦表面制備生物陶瓷涂層的研究[D];中南大學(xué);2004年
,本文編號(hào):1959242
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1959242.html