模擬混凝土孔隙液中幾種有機(jī)緩蝕劑在碳鋼表面吸附及緩蝕行為研究
本文選題:碳鋼 + 緩蝕劑; 參考:《北京化工大學(xué)》2016年博士論文
【摘要】:鋼筋混凝土是當(dāng)前世界上使用最廣泛、用量最大的建筑工程結(jié)構(gòu)材料,混凝土中鋼筋的腐蝕破壞是混凝土結(jié)構(gòu)件失效的主要原因之一。添加緩蝕劑是一種較為有效的抑制鋼筋腐蝕破壞的手段,但目前鋼筋混凝土體系中,能夠同時(shí)抑制均勻腐蝕及局部腐蝕的緩蝕劑多為亞硝酸鹽等無(wú)機(jī)緩蝕劑,這類緩蝕劑往往具有一定的毒性。而較為綠色環(huán)保的有機(jī)緩蝕劑由于作用機(jī)制復(fù)雜、對(duì)局部腐蝕抑制行為較難觀測(cè),研究相對(duì)較少。對(duì)均勻腐蝕及局部腐蝕具有良好抑制作用的有機(jī)緩蝕劑亟待研究。為克服傳統(tǒng)電化學(xué)方法對(duì)緩蝕劑界面作用行為觀測(cè)困難等問(wèn)題,將光譜系統(tǒng)與電化學(xué)測(cè)試、分子模擬連用研究腐蝕行為細(xì)節(jié)、緩蝕劑的作用機(jī)制是當(dāng)前研究的熱點(diǎn)。本論文的研究對(duì)象是丁二酰亞胺(SI)、L-脯氨酸(LP)、木質(zhì)素磺酸鈣(CLS)、羧甲基纖維素鈉(CMC)及油酸鈉(SO)五種有機(jī)分子;本論文的主要內(nèi)容是研究這五種緩蝕劑對(duì)Q235碳鋼在模擬鋼筋混凝土孔隙液中的吸附行為及緩蝕機(jī)理。在進(jìn)行研究之前,我們首先對(duì)五種有機(jī)分子的化學(xué)結(jié)構(gòu)進(jìn)行表征,并探索了一種適用于檢測(cè)有機(jī)緩蝕劑在碳鋼表面對(duì)局部腐蝕作用行為的體系,即,pH值12.5含0.1 mol/L NaCl的飽和Ca(OH)2溶液作為模擬鋼筋混凝土孔隙液(SCP溶液)。本論文的研究成果主要分如下幾個(gè)方面:(1) 通過(guò)進(jìn)行靜態(tài)失重實(shí)驗(yàn)、動(dòng)電位極化曲線慢掃、SEM-EDS及XPS測(cè)試研究了丁二酰亞胺(SI)、L-脯氨酸(LP)、木質(zhì)素磺酸鈣(CLS)、羧甲基纖維素鈉(CMC)及油酸鈉(SO)五種緩蝕劑對(duì)碳鋼在SCP溶液中的緩蝕行為,研究表明,緩蝕劑對(duì)碳鋼腐蝕的抑制作用由大到小依次為CLSSOCMCSILP。其中,CLS對(duì)碳鋼在SCP溶液中的均勻腐蝕及局部腐蝕均有良好的緩蝕作用,在添加量為0.001 mol/L時(shí),靜態(tài)失重測(cè)得緩蝕率達(dá)到98%以上,極化曲線鈍化區(qū)范圍約960 mV, CLS對(duì)小孔腐蝕有較強(qiáng)的抑制作用。SO和CMC的緩蝕率在添加量為0.0008 mol/L時(shí)分別為77%及61%。SI及LP對(duì)碳鋼在SCP溶液中不具有緩蝕性能,添加LP后,伴隨緩蝕劑濃度增加,試樣表面腐蝕反而加速。(2) 對(duì)CLS及SO對(duì)碳鋼在SCP溶液中的緩蝕機(jī)理進(jìn)行了研究,結(jié)果表明,CLS分子中的-S03基團(tuán)能夠與鈍化膜上富集的Ca發(fā)生吸附,形成"Ca-O-S共吸附”結(jié)構(gòu),是一種物理吸附,其苯環(huán)基團(tuán)能夠形成離域的π鍵與界面Fe的3d空軌道配位,形成化學(xué)吸附。CLS既有化學(xué)吸附又有物理吸附,與界面結(jié)合吸附能較高,形成的膜層較為致密、牢固,因此對(duì)均勻腐蝕和局部腐蝕抑制良好。SO分子溶于水后帶有負(fù)電荷,會(huì)自發(fā)向在SCP溶液中帶有正電荷的碳鋼表面擴(kuò)散,極性的羧基吸附在碳鋼表面,而非極性的長(zhǎng)碳鏈向碳鋼外部排布,在鈍化膜的表面形成了一層新的阻隔層,對(duì)溶液中CI-離子有一定的阻隔作用,顯著地降低了試樣表面C1元素含量,該緩蝕機(jī)理得到有機(jī)分子在金屬/溶液界面吸附機(jī)理的支持。(3) 采用熒光顯微鏡觀測(cè)了在未添加及添加了五種有機(jī)緩蝕劑的SCP溶液中浸泡10h后試樣表面膜層的結(jié)構(gòu),通過(guò)觀測(cè)添加不同緩蝕劑后試樣表面在熒光顯微鏡下發(fā)出熒光顏色及強(qiáng)弱,驗(yàn)證了有機(jī)緩蝕劑在鈍化體系中“吸附膜-鈍化膜-基體”的雙層膜結(jié)構(gòu)。(4)通過(guò)測(cè)定試樣在分別添加五種緩蝕劑的SCP溶液中浸泡7200 h的長(zhǎng)期靜態(tài)失重實(shí)驗(yàn),研究了五種緩蝕劑的長(zhǎng)期緩蝕性能,其緩蝕率從高到底依次為CLSSOCMCSILP,整體趨勢(shì)與720 h失重實(shí)驗(yàn)結(jié)果一致。SI、LP及CMC在長(zhǎng)期失重實(shí)驗(yàn)中失去緩蝕效果,SO僅在添加量高于0.0008 mol/L時(shí)緩蝕率超過(guò)75%。CLS在低濃度也具有一定的緩蝕效率,添加量為0.0002 mol/L時(shí),緩蝕率為75%,添加量在0.0008 mol/L以上時(shí),緩蝕率大于93%,是一種適用于長(zhǎng)期使用的有機(jī)緩蝕劑。(5)首次采用了顯微紅外成像系統(tǒng)對(duì)添加緩蝕劑SCP溶液浸泡10h后試樣表面進(jìn)行顯微紅外成像觀測(cè),研究了五種緩蝕劑在碳鋼表面的吸附行為。并首次通過(guò)官能團(tuán)分布圖測(cè)試觀測(cè)到了CLS中的紫丁香基團(tuán)對(duì)小孔的特性吸附,CLS的特性吸附得到軟硬酸堿理論的支持。(6)通過(guò)對(duì)五種緩蝕劑的量子化學(xué)參數(shù)進(jìn)行計(jì)算,根據(jù)緩蝕劑構(gòu)效研究規(guī)律,對(duì)其緩蝕性能進(jìn)行初步的預(yù)測(cè),計(jì)算結(jié)果表明,五種緩蝕劑的緩蝕性能應(yīng)為SOCLSCMCLPSI,但根據(jù)失重及極化曲線數(shù)據(jù)研究表明五種緩蝕劑的能力依次為CLSSOCMCSILP。研究表明,在AE差別不大時(shí),有機(jī)緩蝕劑的特性吸附對(duì)其緩蝕性能有一定的影響。量子化學(xué)計(jì)算更適用于均勻吸附、具有較為類似結(jié)構(gòu)或AE相差較大的緩蝕劑分子的緩蝕性能預(yù)測(cè)。
[Abstract]:Reinforced concrete is the most widely used and most widely used construction material in the world. Corrosion damage of reinforced concrete in concrete is one of the main reasons for failure of concrete structures. Adding corrosion inhibitor is a more effective means to suppress corrosion and damage of steel bars, but at present, the reinforced concrete system can suppress both at the same time. The corrosion inhibitors of uniform corrosion and local corrosion are most of the inorganic inhibitors such as nitrite. These inhibitors often have certain toxicity, and the more green and environmentally friendly corrosion inhibitors are difficult to observe the local corrosion inhibition behavior because of the complex mechanism of action, and have a relatively small study on the uniform corrosion and local corrosion. In order to overcome the difficulty in observing the interfacial action of corrosion inhibitors by traditional electrochemical methods, the spectroscopic system, electrochemical testing and molecular simulation are used to study the details of corrosion behavior. The mechanism of corrosion inhibitors is the hot spot of current research. The research object of this paper is SI (SI), L- proline (LP), wood Calcium sulfonate (CLS), carboxymethyl cellulose sodium (CMC) and sodium oleate (SO) are five organic molecules. The main content of this paper is to study the adsorption behavior and corrosion inhibition mechanism of the five inhibitors on the simulated reinforced concrete pore fluid. Before the study, we first characterize the chemical structures of the five organic molecules. A system for detecting the local corrosion behavior of organic corrosion inhibitors on the surface of carbon steel is also explored, that is, the saturated Ca (OH) 2 solution of pH value 12.5 containing 0.1 mol/L NaCl is used as a simulated reinforced concrete pore fluid (SCP solution). The research results of this paper are mainly divided into the following aspects: (1) the static weight loss experiment and the dynamic potential are carried out. The slow sweep of polarization curves, SEM-EDS and XPS tests have been carried out to study the corrosion inhibition behavior of the five inhibitors of succinimide (SI), L- proline (LP), calcium lignosulfonate (CLS), sodium carboxymethyl cellulose sodium (CMC) and sodium oleate (SO) on the carbon steel in SCP solution. The study shows that the inhibition effect of corrosion inhibitor on carbon steel corrosion from large to small is in the order of CLSSOCMCSILP. and CL. S has a good corrosion inhibition effect on the uniform corrosion and local corrosion of carbon steel in SCP solution. The corrosion inhibition rate of static weightlessness is above 98% when the addition amount is 0.001 mol/L, the polarization curve passivation area is about 960 mV, CLS has a strong inhibition effect on the micropore corrosion.SO and CMC, and the corrosion inhibition rate of.SO and CMC is 77%, respectively, when the addition amount is 0.0008 mol/L. And 61%.SI and LP have no corrosion inhibition in SCP solution. After adding LP, the corrosion of the specimen is accelerated with the increase of corrosion inhibitor concentration. (2) the corrosion inhibition mechanism of CLS and SO in SCP solution is studied. The results show that the -S03 group in CLS molecules can be adsorbed to Ca enriched on the passivation film, forming a "Ca-O-S". The CO adsorption structure is a physical adsorption. The benzene ring group can form the off domain pi bond and the 3D empty orbit of the interface Fe. The chemical adsorption.CLS has both chemical adsorption and physical adsorption, and the adsorption energy of the interface is higher and the formation of the membrane is more compact and solid, so it is good for the.SO molecular solution to inhibit the uniform corrosion and local corrosion. With negative charge after water, it will spontaneously spread to the surface of carbon steel with positive charge in SCP solution, the polar carboxyl group is adsorbed on the surface of carbon steel, and the non polar long carbon chain is arranged outside the carbon steel. A new barrier layer is formed on the surface of the passivation film, which has a certain barrier effect on the CI- ion in the solution, which significantly reduces the sample sheet. The C1 element content of the surface is supported by the mechanism of the adsorption of organic molecules at the metal / solution interface. (3) the structure of the surface film layer of the sample was observed after 10h immersion in the SCP solution without adding and adding five kinds of organic inhibitors. The surface of the sample was observed by the fluorescence microscope after adding different inhibitors. Under the fluorescence color and strength, the double layer membrane structure of the "adsorption film passivation film matrix" in the passivation system was verified. (4) the long-term static weight loss test of 7200 h was soaked in the SCP solution with five inhibitors respectively. The corrosion inhibition rate of the corrosion inhibitor was studied. The whole trend is CLSSOCMCSILP in turn, and the overall trend is consistent with the results of 720 h weightlessness test. LP and CMC lose the inhibition effect in the long-term weightlessness test. SO only has a certain corrosion inhibition efficiency when the addition amount is higher than that of 0.0008 mol/L and has a certain corrosion inhibition efficiency at lower concentration than 75%.CLS. The corrosion inhibition rate is 75% and the addition amount is 0.0008 mol/L when the addition amount is 0.0002 mol/L. At the same time, the corrosion inhibition rate is more than 93%, and it is an organic corrosion inhibitor for long-term use. (5) the microinfrared imaging system was first used to observe the surface of the sample surface after the corrosion inhibitor SCP solution was soaked for 10h. The absorption behavior of five inhibitors on the surface of carbon steel was studied. The lilac group in CLS adsorbed the pore characteristics and the properties of CLS adsorbed the support of the theory of soft and hard acid and alkali. (6) by calculating the quantum chemical parameters of the five inhibitors, the corrosion inhibition performance was preliminarily predicted according to the research law of the corrosion inhibitor, and the results showed that the corrosion inhibition of the five inhibitors should be SO. CLSCMCLPSI, however, according to the data of weight loss and polarization curve, the ability of the five inhibitors is CLSSOCMCSILP. study in turn. The adsorption of organic inhibitors has a certain effect on its corrosion inhibition when the difference of AE is not large. Quantum chemical calculation is more suitable for uniform adsorption, and has a relatively similar structure or a relatively large difference in corrosion inhibition of AE. Anticorrosion performance prediction of agent molecules.
【學(xué)位授予單位】:北京化工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TG174.42
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張晨;趙景茂;;CO_2飽和鹽水溶液中咪唑啉季銨鹽與3種陰離子表面活性劑之間的緩蝕協(xié)同效應(yīng)[J];中國(guó)腐蝕與防護(hù)學(xué)報(bào);2015年06期
2 林修洲;李月;梅擁軍;楊麗;韋勇強(qiáng);崔學(xué)軍;;機(jī)場(chǎng)道面除冰液對(duì)飛機(jī)鍍鎘層腐蝕的研究現(xiàn)狀與進(jìn)展[J];四川理工學(xué)院學(xué)報(bào)(自然科學(xué)版);2014年04期
3 馮興國(guó);左禹;;The Influence of Ce(NO_3)_3·6H_2O on the Inhibitive Effect of Ca(NO_2)_2 in Simulated Concrete Pore Solution[J];Journal of Wuhan University of Technology(Materials Science Edition);2012年05期
4 陳鈞;白林;宋紀(jì)蓉;馬海霞;;咪唑啉緩蝕劑構(gòu)效關(guān)系的量子化學(xué)研究[J];計(jì)算機(jī)與應(yīng)用化學(xué);2012年08期
5 李明;宓一鳴;言智;季鑫;;薄膜材料的制備與表征方法研究進(jìn)展[J];上海工程技術(shù)大學(xué)學(xué)報(bào);2012年02期
6 董澤華;朱濤;石維;郭興蓬;;烯胺阻銹劑對(duì)鋼筋在模擬碳化混凝土孔隙液中的點(diǎn)蝕抑制[J];物理化學(xué)學(xué)報(bào);2011年04期
7 BAYOL E.;GRTEN A. A.;DURSUN M.;KAYAKIRILMAZ K.;;Adsorption Behavior and Inhibition Corrosion Effect of Sodium Carboxymethyl Cellulose on Mild Steel in Acidic Medium[J];物理化學(xué)學(xué)報(bào);2008年12期
8 SOLMAZ R;MERT M. E;KARDA■ G;YAZICI B;ERBL M;;硫酸溶液中1,1′-硫代羰基二咪唑在碳鋼上的吸附及緩蝕影響和碘離子的增強(qiáng)效應(yīng)(英文)[J];物理化學(xué)學(xué)報(bào);2008年07期
9 邢巍,趙暉,李悅生,丁孟賢,陸天虹;可溶性聚酰亞胺LB膜對(duì)碳鋼的緩蝕作用的研究[J];腐蝕科學(xué)與防護(hù)技術(shù);1998年05期
10 ;Improvement of Concrete Properties and Reinforcing Steel Inhibition Using a Natural Product Admixture[J];Journal of Materials Science & Technology;1996年02期
相關(guān)博士學(xué)位論文 前2條
1 陳國(guó)浩;二氧化碳腐蝕體系緩蝕劑的緩蝕機(jī)理及緩蝕協(xié)同效應(yīng)研究[D];北京化工大學(xué);2012年
2 馮興國(guó);應(yīng)力作用下碳鋼在混凝土環(huán)境中的腐蝕與鈍化[D];北京化工大學(xué);2012年
,本文編號(hào):1935234
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1935234.html