基于改進響應(yīng)面法的立管疲勞可靠性計算
發(fā)布時間:2018-05-23 12:35
本文選題:海洋立管 + 疲勞可靠性 ; 參考:《天津大學(xué)學(xué)報(自然科學(xué)與工程技術(shù)版)》2017年10期
【摘要】:基于現(xiàn)代斷裂力學(xué)方法建立立管疲勞失效的極限狀態(tài)函數(shù).應(yīng)用經(jīng)典響應(yīng)面法求解可靠性指標(biāo)時,發(fā)現(xiàn)迭代過程會出現(xiàn)混沌或數(shù)值振蕩現(xiàn)象.為避免可靠性指標(biāo)計算過程中不收斂問題,引入混沌控制方法改進算法.研究表明改進的響應(yīng)面法具有較好的適用性和收斂性.基于改進的響應(yīng)面法重新計算立管的疲勞可靠性指標(biāo),有效解決了迭代不收斂問題,且計算結(jié)果具有較高精度.在此基礎(chǔ)上,分析了隨機變量變異系數(shù)對立管疲勞可靠性的影響.計算結(jié)果顯示立管疲勞可靠性隨隨機變量變異系數(shù)的增大而減小,并且隨機變量B變異系數(shù)對立管疲勞可靠性的影響最大.
[Abstract]:Based on the modern fracture mechanics method, the limit state function of fatigue failure of riser is established. When the classical response surface method is used to solve the reliability index, it is found that chaos or numerical oscillation will occur in the iterative process. In order to avoid the problem of non-convergence in the process of reliability index calculation, an improved chaos control algorithm is introduced. The results show that the improved response surface method has good applicability and convergence. Based on the improved response surface method, the fatigue reliability index of riser is recalculated, which effectively solves the problem of iteration non-convergence, and the calculation results have high accuracy. On this basis, the influence of the coefficient of variation of random variables on the fatigue reliability of pipe is analyzed. The results show that the fatigue reliability of riser decreases with the increase of variation coefficient of random variables, and the coefficient of variation B of random variable has the greatest influence on the fatigue reliability of risers.
【作者單位】: 天津大學(xué)水利工程仿真與安全國家重點實驗室;高新船舶與深海開發(fā)裝備協(xié)同創(chuàng)新中心;
【基金】:國家重點基礎(chǔ)研究發(fā)展計劃(973計劃)資助項目(2014CB046803) 國家自然科學(xué)基金資助項目(51239008)~~
【分類號】:TG142.12
【相似文獻】
相關(guān)期刊論文 前3條
1 王曉梅;李郝林;午麗娟;;基于響應(yīng)面法的車削粗糙度預(yù)測模型構(gòu)建[J];科技創(chuàng)新導(dǎo)報;2011年11期
2 方沂;李鳳泉;;響應(yīng)面法在高速加工切削參數(shù)優(yōu)選中的應(yīng)用[J];機械設(shè)計;2006年07期
3 劉玉琳;陳文亮;鮑益東;王小平;;基于自適應(yīng)響應(yīng)面的多邊形坯料形狀優(yōu)化設(shè)計[J];江蘇大學(xué)學(xué)報(自然科學(xué)版);2012年03期
,本文編號:1924757
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1924757.html
最近更新
教材專著