Ti6Al4V高速切削過(guò)程有限元模擬及切削參數(shù)優(yōu)化
本文選題:高速切削 + 有限元仿真; 參考:《昆明理工大學(xué)》2017年碩士論文
【摘要】:鈦合金材料力學(xué)性能優(yōu)異,并且耐腐蝕性好材料密度較低,因此是航空航天工業(yè)零部件生產(chǎn)中主要的消費(fèi)材料。然而由于鈦合金的彈性模量小、高溫化學(xué)活性高和導(dǎo)熱系數(shù)低等特性,又使得鈦合金成為一種較為典型的難加工材料。在鈦合金材料的高速切削加工過(guò)程中,很容易出現(xiàn)切削溫度過(guò)高的情況,這會(huì)導(dǎo)致工件表面質(zhì)量難以控制、切削刀具磨損加快,而降低切削速度又會(huì)引起加工效率下降不利于生產(chǎn)。同時(shí),大型的航空零件在設(shè)計(jì)時(shí)大多以整體設(shè)計(jì)特點(diǎn)為主,生產(chǎn)加工時(shí)多數(shù)材料都要從工件毛坯中切除,這就引起工件加工成本較高。盡管,通過(guò)3D打印技術(shù)生產(chǎn)出來(lái)的鈦合金零件在一些特殊領(lǐng)域得到應(yīng)用,但是由于成本很高并不適合大規(guī)模生產(chǎn)。所以,實(shí)現(xiàn)鈦合金的快速、高效切削加工是目前航空制造工業(yè)領(lǐng)域中迫切需要解決的問(wèn)題。本文主要是從刀具幾何參數(shù)的角度去解決鈦合金Ti6A14V加工中的切削力過(guò)大和切削溫度過(guò)高的問(wèn)題,以盡可能降低切削溫度和切削力為目標(biāo),從而求得優(yōu)化后的刀具幾何參數(shù)組合。本文通過(guò)對(duì)鈦合金材料高速切削研究現(xiàn)狀和高速切削加工理論進(jìn)行研究,了解到切削過(guò)程有限元模擬的一些關(guān)鍵技術(shù)。對(duì)刀-屑摩擦模型、切屑分離準(zhǔn)則、材料本構(gòu)模型等關(guān)鍵技術(shù)分析后,利用專業(yè)的切削仿真軟件AdvantEdge建立了硬質(zhì)合金材料刀具高速切削鈦合金Ti6A14V的三維正交切削有限元模型,并通過(guò)變換刀具幾何參數(shù)(前角γ0、后角α0、鈍圓半徑rε)進(jìn)行模擬仿真得到不同參數(shù)組合下的切削力與切削溫度數(shù)據(jù),分析得出了各個(gè)參數(shù)對(duì)切削力與切削溫度的影響規(guī)律。利用二階響應(yīng)面法對(duì)仿真模擬得到的不同刀具幾何參數(shù)下的多組切削溫度與切削力數(shù)據(jù)進(jìn)行擬合,得到了刀具幾何參數(shù)與切削溫度和切削力之間的函數(shù)關(guān)系模型。然后,在對(duì)刀具幾何參數(shù)的取值范圍進(jìn)行約束的基礎(chǔ)之上,利用遺傳算法優(yōu)化程序優(yōu)化計(jì)算,得到了適合Ti6A14V材料的硬質(zhì)合金材料刀具幾何參數(shù)組合。該參數(shù)組合下切削溫度的數(shù)值范圍都在較為合理的范圍內(nèi),遠(yuǎn)離了硬質(zhì)合金的軟化溫度,能夠充分的發(fā)揮刀具的切削性能。根據(jù)優(yōu)化結(jié)果定制切削刀具進(jìn)行切削實(shí)際試驗(yàn),試驗(yàn)結(jié)果表明優(yōu)化后的切削力與切削溫度數(shù)據(jù)比較理想。
[Abstract]:Titanium alloy has excellent mechanical properties and low density of corrosion-resistant materials, so it is the main consumption material in the production of aerospace industry parts. However, because of its low elastic modulus, high chemical activity at high temperature and low thermal conductivity, titanium alloy has become a typical refractory material. In the process of high speed cutting of titanium alloy material, it is easy to appear the situation that the cutting temperature is too high, which will lead to the hard to control the surface quality of the workpiece, and the wear of cutting tool will be accelerated. And lower cutting speed will lead to the decline of machining efficiency is not conducive to production. At the same time, most of the large aeronautical parts are designed with the overall design characteristics, and most of the materials must be removed from the workpiece blank in the production and processing, which leads to the higher processing cost of the workpiece. Although titanium alloy parts produced by 3D printing technology have been applied in some special fields, they are not suitable for mass production because of their high cost. Therefore, the rapid and efficient cutting of titanium alloy is an urgent problem in the field of aviation manufacturing industry. In this paper, the problem of too large cutting force and too high cutting temperature in Ti6A14V machining of titanium alloy is solved from the angle of tool geometry parameters. The aim of this paper is to reduce cutting temperature and cutting force as far as possible, so as to obtain the optimized combination of tool geometry parameters. In this paper, the research status of high speed cutting of titanium alloy material and the theory of high speed cutting are studied, and some key techniques of finite element simulation of cutting process are found out. After analyzing the key technologies such as the tool chip friction model, chip separation criterion and material constitutive model, the 3D orthogonal cutting finite element model of Ti6A14V for high speed cutting of titanium alloy with cemented carbide cutting tool was established by using the professional cutting simulation software AdvantEdge. The cutting force and cutting temperature data are obtained by changing the geometric parameters of the cutting tool (the front angle 緯 0, the rear angle 偽 0, the blunt circle radius r 蔚), and the influence of each parameter on the cutting force and cutting temperature is analyzed. The second order response surface method is used to fit the multi-group cutting temperature and cutting force data under different tool geometry parameters, and the function model of tool geometry parameters and cutting temperature and cutting force is obtained. Then, on the basis of constraining the range of geometric parameters of cutting tools, the optimum calculation program of genetic algorithm is used to obtain the combination of geometric parameters of cemented carbide materials suitable for Ti6A14V materials. The numerical range of cutting temperature under the combination of these parameters is in a reasonable range, which is far from the softening temperature of cemented carbide and can give full play to the cutting performance of the cutting tool. According to the optimized results, the cutting tool is customized for actual cutting test. The experimental results show that the optimized cutting force and cutting temperature data are ideal.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG506.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄒斌,趙yN;石墨爐原子吸收法測(cè)定優(yōu)質(zhì)Ti6Al4V中微量錫[J];材料工程;1999年09期
2 王曉琴;艾興;趙軍;郭培全;;硬質(zhì)合金刀具高速干銑削Ti6Al4V刀具壽命研究及切削參數(shù)優(yōu)化[J];組合機(jī)床與自動(dòng)化加工技術(shù);2008年08期
3 姜增輝;李玉朋;呂楊;;切削用量對(duì)車削Ti6Al4V切削力影響的研究[J];制造技術(shù)與機(jī)床;2013年08期
4 范依航;鄭敏利;楊樹財(cái);程明明;;基于刀具磨損和切屑形成對(duì)切削Ti6Al4V的切削力特性研究[J];制造技術(shù)與機(jī)床;2011年08期
5 曹自洋;何寧;李亮;朱文明;;高速切削鈦合金Ti6Al4V切屑的形成及其數(shù)值模擬[J];中國(guó)機(jī)械工程;2008年20期
6 王輝;周豐;韓榮第;;綠色銑削Ti6Al4V的切削變形試驗(yàn)研究[J];工具技術(shù);2012年09期
7 楊勇;李長(zhǎng)河;孫杰;;鈦合金Ti6Al4V銑削加工中切削力的三維數(shù)值模擬[J];應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào);2010年03期
8 陳瑞潤(rùn);丁宏升;郭景杰;梁富振;張子欽;畢維生;劉林;傅恒志;;工藝參數(shù)影響冷坩堝熔鑄Ti6Al4V溫度場(chǎng)計(jì)算[J];材料科學(xué)與工藝;2009年04期
9 王明海;李世永;王京剛;高蕾;;航空鈦合金Ti6Al4V的三維銑削加工有限元仿真[J];機(jī)械科學(xué)與技術(shù);2014年07期
10 王明海;王京剛;鄭耀輝;李世永;高蕾;;鈦合金Ti6Al4V銑削有限元仿真分析[J];制造業(yè)自動(dòng)化;2013年22期
相關(guān)會(huì)議論文 前2條
1 張高會(huì);黃國(guó)青;于明洲;吳太全;張平則;;Ti6Al4V雙層輝光離子無(wú)氫滲碳擴(kuò)散動(dòng)力學(xué)[A];第九屆真空冶金與表面工程學(xué)術(shù)會(huì)議論文摘要集[C];2009年
2 張高會(huì);黃國(guó)青;于明洲;吳太全;張平則;;Ti6Al4V雙層輝光離子無(wú)氫滲碳擴(kuò)散動(dòng)力學(xué)(英文)[A];真空技術(shù)與表面工程——第九屆真空冶金與表面工程學(xué)術(shù)會(huì)議論文集[C];2009年
相關(guān)碩士學(xué)位論文 前6條
1 王洋;高速切削Ti6Al4V硬質(zhì)合金刀具磨損預(yù)測(cè)研究[D];安徽工業(yè)大學(xué);2016年
2 李媛;激光微加工Ti、Ti6Al4V表面潤(rùn)濕性研究[D];天津大學(xué);2016年
3 李海星;Ti6Al4V的電火花線切割加工參數(shù)及工藝研究[D];太原理工大學(xué);2017年
4 李川平;Ti6Al4V鈦合金動(dòng)態(tài)本構(gòu)模型與高速切削有限元模擬研究[D];蘭州理工大學(xué);2011年
5 劉月萍;銑削Ti6Al4V刀具刃口鈍化研究[D];山東大學(xué);2010年
6 沙東;Ti6Al4V表面激光織構(gòu)化及其摩擦學(xué)特性研究[D];大連海事大學(xué);2011年
,本文編號(hào):1923255
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1923255.html