工具陰極反拷法及其在Ti-Al葉片電解加工中的應(yīng)用
本文選題:電解加工 + 鈦鋁葉片 ; 參考:《南京航空航天大學(xué)》2017年碩士論文
【摘要】:TiAl材料因其自身輕質(zhì)和耐高溫等優(yōu)異性能,逐漸廣泛應(yīng)用到航空發(fā)動(dòng)機(jī)葉片中,然而該材料室溫塑性低、硬度高,機(jī)械加工非常困難。電解加工是一種基于陽(yáng)極溶解的加工方式,非常適合加工TiAl葉片。但是電解成型規(guī)律復(fù)雜,精確設(shè)計(jì)陰極非常困難,反復(fù)修正陰極也往往延長(zhǎng)葉片電解加工準(zhǔn)備周期。反拷法通過(guò)標(biāo)準(zhǔn)葉片反向拷貝制備工具,再用制備的工具加工工件,是一種快速獲得工具電極的工藝方法。然而電解加工并非可逆過(guò)程,且反拷加工過(guò)程涉及兩次電解加工誤差,其工件成型精度難以滿足航空發(fā)動(dòng)機(jī)葉片制造要求。本文以發(fā)動(dòng)機(jī)TiAl葉片為研究對(duì)象,以提高反拷法加工精度為目標(biāo),展開(kāi)了葉片型面和進(jìn)排氣邊的反拷法實(shí)驗(yàn)加工,本文主要研究?jī)?nèi)容如下:(1)提出了葉片“變參數(shù)等小間隙”反拷法。在分析反拷法誤差構(gòu)成的基礎(chǔ)上,通過(guò)反拷前后的電場(chǎng)、流場(chǎng)及陽(yáng)極動(dòng)態(tài)成型有限元仿真分析,明晰了加工間隙大小以及兩次電解加工過(guò)程間隙的一致性是影響反拷法加工精度的核心要素,形成了變參數(shù)等小間隙反拷法加工方案。(2)開(kāi)展了葉片型面“變參數(shù)等小間隙”反拷法電解加工試驗(yàn)。首先展開(kāi)1Cr18Ni9Ti葉片型面的反拷法加工試驗(yàn),試驗(yàn)結(jié)果均表明減小加工間隙和提升兩次電解加工一致性將有助于電解加工精度的提升,證明了“變參數(shù)等小間隙”反拷法的有效性。在上述研究基礎(chǔ)上,采用“變參數(shù)等小間隙法”開(kāi)展TiAl葉片的反拷法加工,試驗(yàn)結(jié)果表明反拷后的TiAl葉片型面輪廓精度達(dá)到0.071mm,驗(yàn)證了“變參數(shù)等小間隙法”在TiAl葉片加工中的可行性。(3)提出了基于端面進(jìn)給的進(jìn)排氣邊反拷法電解加工方法。依據(jù)真實(shí)葉片進(jìn)排氣邊輪廓,開(kāi)展了1Cr18Ni9Ti材料的進(jìn)排氣邊反拷法加工基礎(chǔ)試驗(yàn),成功加工出柱狀進(jìn)排氣邊曲面試件,試件輪廓精度達(dá)到0.062mm,實(shí)驗(yàn)結(jié)果證明了端面進(jìn)給進(jìn)排氣邊反拷法加工的可行性。
[Abstract]:TiAl material has been widely used in aero-engine blades because of its light weight and high temperature resistance. However, the material has low room temperature plasticity and high hardness, so it is very difficult to machining. Electrolytic machining is a kind of anodic dissolution based machining method, which is very suitable for machining TiAl blades. However, it is very difficult to design the cathode accurately because of the complex law of electrolytic forming, and the preparation period of ECM is often prolonged by modifying the cathode repeatedly. Reverse torture is a rapid method to obtain tool electrode by reverse copy of standard blade and then use the tool to process the workpiece. However, ECM is not a reversible process, and the reverse machining process involves two ECM errors, and the forming accuracy of the workpiece is difficult to meet the requirements of aero-engine blade manufacturing. In this paper, the TiAl blade of engine is taken as the research object, with the aim of improving the precision of the reverse torture machining, the experimental processing of the blade profile and the inlet and exhaust edges is carried out. The main contents of this paper are as follows: (1) the method of "variable parameter equal small gap" is put forward. Based on the analysis of the error structure of the reverse torture method, the finite element simulation analysis of the electric field, flow field and anode dynamic forming before and after reverse cuffing is carried out. It is clear that the size of machining clearance and the consistency of gap between two electrolytic machining processes are the core factors that affect the precision of reverse torture machining. The experiment of "variable parameter equal small gap" reverse torture machining was carried out on the blade surface. The experimental results show that reducing the machining gap and raising the consistency of two ECM will help to improve the precision of ECM, and prove the effectiveness of "variable parameter and small gap". On the basis of the above research, the "variable parameter equal small gap method" was used to carry out the reverse processing of TiAl blades. The experimental results show that the contour accuracy of TiAl blade profile is 0.071 mm, which verifies the feasibility of "variable parameter equal small gap method" in TiAl blade machining. According to the contour of the real blade inlet and exhaust edge, the basic experiment of the back grilling method of the inlet and exhaust edge of 1Cr18Ni9Ti material was carried out, and the cylindrical inlet and exhaust edge curved specimen was successfully processed. The contour precision of the specimen is 0.062 mm. The experimental results prove the feasibility of the end face inlet and exhaust edge reverse processing.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG662
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 何紀(jì)源;;電解加工在航空制造中的應(yīng)用及發(fā)展[J];科技創(chuàng)新與應(yīng)用;2016年06期
2 周玉鳳;程小元;張志金;王洪國(guó);;TiAl合金精密振動(dòng)電解加工表面質(zhì)量的研究[J];航空制造技術(shù);2015年15期
3 姚文靜;;美國(guó)RTI為leap發(fā)動(dòng)機(jī)供應(yīng)鈦鋁合金[J];中國(guó)鈦業(yè);2014年04期
4 劉嘉;方忠東;鄧守成;朱棟;;整體葉盤(pán)電解加工陰極修正方法與試驗(yàn)[J];南京航空航天大學(xué)學(xué)報(bào);2014年05期
5 劉林波;張遼遠(yuǎn);;利用塊電極反拷法在線制作和修正工具電極[J];工具技術(shù);2014年06期
6 于冰;;電加工技術(shù)在航空發(fā)動(dòng)機(jī)上的應(yīng)用[J];金屬加工(冷加工);2013年22期
7 邵偉平;李向洲;郝永平;;基于塊電極反拷法的工具電極在線制作與修正[J];工具技術(shù);2013年10期
8 朱棟;朱荻;徐正揚(yáng);;航空發(fā)動(dòng)機(jī)葉片電解加工陰極數(shù)字化修正模型及其試驗(yàn)研究[J];機(jī)械工程學(xué)報(bào);2011年07期
9 朱棟;朱荻;徐正揚(yáng);;基于神經(jīng)網(wǎng)絡(luò)的葉片電解加工陰極修正仿真[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年02期
10 張明岐;傅軍英;;高溫合金整體葉盤(pán)精密振動(dòng)電解加工方法的應(yīng)用分析[J];航空制造技術(shù);2009年22期
相關(guān)會(huì)議論文 前1條
1 趙龍;劉嘉;李寒松;方越;;TiAl金屬間化合物脈沖電解加工試驗(yàn)研究[A];第16屆全國(guó)特種加工學(xué)術(shù)會(huì)議論文集(上)[C];2015年
相關(guān)博士學(xué)位論文 前3條
1 吳銳;整體構(gòu)件高效、快捷數(shù)控電解加工的應(yīng)用研究[D];南京航空航天大學(xué);2009年
2 徐正揚(yáng);發(fā)動(dòng)機(jī)葉片精密電解加工關(guān)鍵技術(shù)研究[D];南京航空航天大學(xué);2008年
3 王蕾;發(fā)動(dòng)機(jī)葉片高精度電解加工陰極設(shè)計(jì)系統(tǒng)及實(shí)驗(yàn)研究[D];南京航空航天大學(xué);2006年
相關(guān)碩士學(xué)位論文 前4條
1 彭雪濤;旋印電解加工流場(chǎng)仿真與夾具設(shè)計(jì)[D];南京航空航天大學(xué);2014年
2 吳林烽;電參數(shù)對(duì)小間隙電解加工影響規(guī)律研究[D];浙江理工大學(xué);2014年
3 徐世玉;某型發(fā)動(dòng)機(jī)噴嘴旋流室的微細(xì)電解加工研究[D];西安工業(yè)大學(xué);2013年
4 王磊;微細(xì)群孔電解加工關(guān)鍵技術(shù)研究[D];南京航空航天大學(xué);2007年
,本文編號(hào):1887690
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1887690.html