硅對(duì)高鉻鑄鐵高頻感應(yīng)堆焊層組織和性能的影響
本文選題:硅 + 高鉻鑄鐵。 參考:《鄭州大學(xué)》2017年碩士論文
【摘要】:高頻感應(yīng)堆焊作為一種金屬材料表面強(qiáng)化工藝,具有升溫快、熱影響區(qū)小、操作簡(jiǎn)單等優(yōu)點(diǎn),在工業(yè)領(lǐng)域中有著廣泛的應(yīng)用。高鉻鑄鐵作為一種常用的耐磨材料,具有性價(jià)比高、適應(yīng)性廣等優(yōu)點(diǎn)。本文通過在高鉻鑄鐵合金中添加一定量的硅元素,研究高頻感應(yīng)堆焊工藝條件下合金粉末中硅加入量對(duì)高鉻鑄鐵堆焊層組織和性能的影響。通過正交試驗(yàn),研究了工作電流、加熱時(shí)間、熔劑添加量對(duì)堆焊層成型工藝的影響,得到最佳堆焊工藝參數(shù)為:工作電流70A、加熱時(shí)間50s、熔劑添加量14%。采用上述工藝參數(shù),研究了粉末中硅加入量對(duì)堆焊層成型性的影響,結(jié)果表明堆焊粉末中硅加入量超過7%時(shí)成型性不佳。采用優(yōu)化工藝制備粉末中硅加入量為0.6%、1%、2%、3%、4%、5%、6%、7%的高頻感應(yīng)堆焊層,并采用金相顯微鏡、掃描電鏡、能譜儀、X射線衍射儀、洛氏硬度計(jì)、維氏硬度計(jì)、磨損試驗(yàn)機(jī)等對(duì)堆焊層組織性能進(jìn)行測(cè)試分析,試驗(yàn)結(jié)果如下:堆焊層組織為初生碳化物+共晶組織的過共晶高鉻鑄鐵組織。初生碳化物與共晶碳化物均為M7C3型碳化物,基體由馬氏體、奧氏體與鐵素體組成。堆焊粉末中硅含量從0.6%增加到7%,高頻感應(yīng)堆焊層中的硅含量從0.286%變化到2.083%。隨堆焊粉末中硅加入量的增多,堆焊層中初生碳化物的數(shù)量增加,形態(tài)細(xì)化;共晶碳化物數(shù)量減少,共晶碳化物間距縮小;固溶于基體中的硅原子數(shù)量增加,基體中奧氏體含量減少,馬氏體含量增加。對(duì)堆焊層宏觀和顯微硬度進(jìn)行檢測(cè)分析,高鉻鑄鐵堆焊層的洛氏硬度為59.2~63.7HRC,隨著硅加入量的增加,堆焊層硬度升高,當(dāng)硅加入量超過5%時(shí),堆焊層硬度增加趨于平緩。高鉻鑄鐵堆焊層中初生碳化物顯微硬度值為1310.6~1383.1HV,顯微硬度值不隨硅加入量的變化而變化;共晶團(tuán)顯微硬度為590.5~691.6HV,隨著硅加入量的增加共晶團(tuán)顯微硬度值升高,當(dāng)硅加入量超過4%時(shí),共晶團(tuán)顯微硬度值的增加趨于平緩。對(duì)堆焊層斷裂韌性進(jìn)行分析,隨著堆焊粉末中硅加入量的增加,堆焊層的斷裂韌性值先升高后降低。當(dāng)硅加入量在0.6%~5%時(shí),隨硅加入量的增加,堆焊層的斷裂韌性值升高,在硅加入量為5%時(shí)堆焊層的斷裂韌性值最高;當(dāng)硅加入量在6%~7%時(shí),隨硅加入量的增加,堆焊層的斷裂韌性值降低。對(duì)堆焊層的耐磨性進(jìn)行分析,以相對(duì)耐磨性來表征堆焊層的耐磨能力。當(dāng)載荷為10N時(shí),隨著硅加入量的增加,堆焊層的相對(duì)耐磨性升高,最高值為1.14,在硅加入量超過5%時(shí),相對(duì)耐磨性增加趨于平緩;當(dāng)載荷為40N時(shí),隨著硅加入量的增加,堆焊層的耐磨性先升高后降低,在硅加入量為4%時(shí)相對(duì)耐磨性達(dá)到最高為1.11。根據(jù)上述試驗(yàn)結(jié)果,綜合考慮堆焊工藝的經(jīng)濟(jì)性能和耐磨性能,確認(rèn)在高頻感應(yīng)堆焊工藝下高鉻鑄鐵粉末中硅的適宜加入量為4%左右。
[Abstract]:High frequency induction surfacing, as a kind of metal material surface strengthening technology, has the advantages of fast heating, small heat affected zone, simple operation and so on. It is widely used in industrial field. High-chromium cast iron, as a common wear-resistant material, has the advantages of high cost-performance ratio and wide adaptability. In this paper, the effect of silicon content in alloy powder on the microstructure and properties of high chromium cast iron surfacing layer under the condition of high frequency induction surfacing welding was studied by adding a certain amount of silicon into high chromium cast iron alloy. The effects of working current, heating time and flux addition on the forming process of surfacing layer were studied by orthogonal test. The optimum surfacing process parameters were as follows: working current 70 A, heating time 50 s, flux addition 14 s. The influence of silicon content in the powder on the forming property of the surfacing layer was studied by using the above process parameters. The results showed that the molding property of the surfacing powder was not good when the amount of silicon added in the powder was more than 7. The optimized process was used to prepare the high frequency induction surfacing layer with the addition amount of 0.6% silicon in the powder and 3% of the silicon content in the powder. The layer was composed of metallographic microscope, scanning electron microscope, energy spectrometer, X-ray diffractometer, Rockwell hardness meter, Vickers hardness meter, metallographic microscope, scanning electron microscope, X-ray diffractometer, Rockwell hardness meter, Vickers hardness meter. The results are as follows: the microstructure of the surfacing layer is hypereutectic high chromium cast iron with primary carbides eutectic structure. The primary carbides and eutectic carbides are both M7C3 carbides, and the matrix consists of martensite, austenite and ferrite. The silicon content in the surfacing powder increased from 0.6% to 7%, and the silicon content in the high-frequency induction surfacing layer changed from 0.286% to 2.0833%. With the increase of silicon content in the surfacing powder, the number of primary carbides in the surfacing layer increases, the morphology is refined, the amount of eutectic carbides decreases, the distance between eutectic carbides decreases, and the number of silicon atoms dissolved in the matrix increases. The content of austenite in matrix decreases and the content of martensite increases. The microhardness and macroscopic hardness of the surfacing layer were tested and analyzed. The Rockwell hardness of the surfacing layer of high chromium cast iron was 59.2or 63.7 HRC. With the increase of silicon content, the hardness of the surfacing layer increased, and the hardness of the surfacing layer tended to increase slowly when the addition amount of silicon exceeded 5%. The microhardness of primary carbides in high chromium cast iron surfacing layer is 1310.6 / 1383.1 HVV, and the microhardness of eutectic cluster is 590.5 / 691.6HV. the microhardness of eutectic cluster increases with the increase of silicon content, and the microhardness of eutectic group increases with the increase of silicon content, when the addition amount of silicon is more than 4, the microhardness of eutectic cluster increases with the increase of silicon content. The increase of microhardness value of eutectic clusters tends to be gentle. The fracture toughness of the surfacing layer was analyzed. With the increase of silicon content in the surfacing powder, the fracture toughness of the surfacing layer first increased and then decreased. When the amount of silicon is between 0.6 and 5, the fracture toughness of the surfacing layer increases with the increase of the amount of silicon, and the fracture toughness of the surfacing layer is the highest when the amount of silicon is 5, and when the amount of silicon is in the range of 6 ~ 7, the fracture toughness of the surfacing layer increases with the increase of the amount of silicon. The fracture toughness of the surfacing layer decreases. The wear resistance of the surfacing layer is analyzed and the wear resistance of the surfacing layer is characterized by the relative wear resistance. When the load is 10 N, the relative wear resistance of the surfacing layer increases with the increase of silicon content, and the maximum value is 1.14. When the silicon addition is more than 5 N, the relative wear resistance increases slightly, and when the load is 40 N, the relative wear resistance increases with the increase of silicon content. The wear resistance of the surfacing layer first increased and then decreased, and the relative wear resistance reached the maximum of 1.11 when the silicon content was 4. According to the above test results, considering the economic properties and wear resistance of surfacing technology, it is confirmed that the suitable addition amount of silicon in high chromium cast iron powder under high frequency induction surfacing technology is about 4%.
【學(xué)位授予單位】:鄭州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG455
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 Л.Α.Чкало ,宋忠明;等離子粉末堆焊[J];國外機(jī)車車輛工藝;2004年05期
2 ;堆焊[J];機(jī)械制造文摘(焊接分冊(cè));2009年02期
3 ;孔內(nèi)壁的填砂堆焊法[J];焊接;1970年04期
4 郭達(dá)爾斯基;齊國治;胡旗振;;蘇聯(lián)堆焊工作目前的主要方向[J];焊接;1960年01期
5 ;羅馬尼亞高頻堆焊犁鏵的一些情況[J];糧油加工與食品機(jī)械;1973年01期
6 王德?lián)?仲繼才;;用堆焊法修補(bǔ)錘砧[J];鍛壓機(jī)械;1977年01期
7 凡里;;大面積多絲單道堆焊[J];焊接;1980年06期
8 張家有;;超聲探測(cè)堆焊層下裂紋的探討[J];焊接;1984年06期
9 ;堆焊[J];機(jī)械制造文摘(焊接分冊(cè));1994年03期
10 ;堆焊[J];機(jī)械制造文摘(焊接分冊(cè));1995年05期
相關(guān)會(huì)議論文 前10條
1 張迪;單際國;任家烈;劉景鳳;沈風(fēng)剛;;光束反應(yīng)合成碳化物增強(qiáng)的鎳基合金堆焊層[A];第四屆十三省區(qū)市機(jī)械工程學(xué)會(huì)科技論壇暨2008海南機(jī)械科技論壇論文集[C];2008年
2 金卿;;壓力容器堆焊層鐵素體數(shù)超標(biāo)原因分析及預(yù)防措施和解決方案[A];第十五次全國焊接學(xué)術(shù)會(huì)議論文集[C];2010年
3 劉航;田志凌;汪光勝;徐平;;不銹鋼堆焊層的充氫試驗(yàn)研究[A];第九次全國焊接會(huì)議論文集(第1冊(cè))[C];1999年
4 謝蒙生;;鋼質(zhì)基體黃銅堆焊氣焊工藝研究[A];第十一次全國焊接會(huì)議論文集(第1冊(cè))[C];2005年
5 張迪;單際國;任家烈;劉景鳳;沈風(fēng)剛;;光束反應(yīng)合成碳化物增強(qiáng)的鎳基合金堆焊層[A];北京機(jī)械工程學(xué)會(huì)2008年優(yōu)秀論文集[C];2008年
6 耿香月;;模具修復(fù)用冷堆焊層的成分、組織及性能分析[A];第四屆金屬材料及熱處理年會(huì)論文集(上)[C];1991年
7 魏學(xué)安;林建鴻;王艷;吳東棣;;不銹鋼堆焊剝離過程中應(yīng)力作用的研究[A];第四屆全國壓力容器學(xué)術(shù)會(huì)議論文集[C];1997年
8 單際國;任家烈;;45#鋼表面光束粉末堆焊層的耐磨性能[A];第九次全國焊接會(huì)議論文集(第1冊(cè))[C];1999年
9 沈士明;劉斌;;加氫反應(yīng)器堆焊層表面裂紋疲勞擴(kuò)展的形貌與速率的研究[A];壓力容器先進(jìn)技術(shù)——第七屆全國壓力容器學(xué)術(shù)會(huì)議論文集[C];2009年
10 丁韋;宋宏圖;高振坤;黃辰奎;王貴山;黃銳;;貝氏體鋼轍叉電弧堆焊層的開裂分析[A];2009年全國失效分析學(xué)術(shù)會(huì)議論文集[C];2009年
相關(guān)重要報(bào)紙文章 前4條
1 本報(bào)記者 柳祖林;用硬面技術(shù)為冶金備件“延壽降本”[N];中國冶金報(bào);2012年
2 林立恒;鐵路鋼軌電焊修理法[N];世界金屬導(dǎo)報(bào);2010年
3 本報(bào)記者 張年農(nóng)邋特約記者 李東風(fēng);“明珠”閃爍在河南濟(jì)鋼[N];現(xiàn)代物流報(bào);2008年
4 淮北順達(dá)商貿(mào)有限公司 趙艷軍;R6-40NoF風(fēng)機(jī)葉輪軸磨損的現(xiàn)場(chǎng)修復(fù)[N];中國建材報(bào);2007年
相關(guān)碩士學(xué)位論文 前10條
1 平超凡;硅對(duì)高鉻鑄鐵高頻感應(yīng)堆焊層組織和性能的影響[D];鄭州大學(xué);2017年
2 肖勇;堆焊層對(duì)連鑄輥熱機(jī)械行為的影響分析及模擬研究[D];武漢科技大學(xué);2012年
3 伍鋼;Q235及304不銹鋼表面CMT-TWIN堆焊鎳基合金工藝研究[D];南京理工大學(xué);2015年
4 陳宏;ZM5鑄造鎂合金激光表面修復(fù)與強(qiáng)化[D];上海交通大學(xué);2015年
5 王計(jì)輝;2219鋁合金交流TIG堆焊成型技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2015年
6 彭思源;WC顆粒增強(qiáng)鐵基復(fù)合堆焊層性能研究[D];安徽建筑大學(xué);2015年
7 周云方;鈷基合金等離子粉末堆焊層的組織及性能研究[D];山東大學(xué);2016年
8 陳茂林;超聲沖擊對(duì)304不銹鋼堆焊層組織及性能的影響[D];大連理工大學(xué);2016年
9 盧江;雙機(jī)器人齒盤協(xié)同堆焊生產(chǎn)線關(guān)鍵技術(shù)研究[D];浙江大學(xué);2017年
10 魏雪;主蒸汽隔離閥用F91材料熱處理與焊接性能的研究[D];大連理工大學(xué);2016年
,本文編號(hào):1884581
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1884581.html