合金化對(duì)H62黃銅組織和性能影響
本文選題:H62黃銅 + 稀土; 參考:《濟(jì)南大學(xué)》2017年碩士論文
【摘要】:被廣泛應(yīng)用于工業(yè)和生活中,例如散熱器、海底管道、水管等,是因?yàn)樗哂辛己玫募庸すに囆、耐蝕性、力學(xué)性能、導(dǎo)電以及價(jià)格低廉等優(yōu)點(diǎn)。但是,其在使用過(guò)程中,會(huì)出現(xiàn)脫鋅腐蝕的現(xiàn)象,導(dǎo)致黃銅的機(jī)械性能下降,使其使用壽命大大縮短,從而帶來(lái)了潛在的安全隱患。因此,開發(fā)出新成分的高強(qiáng)度、耐腐蝕黃銅已成為目前研究的重點(diǎn)。本文以H62黃銅為研究對(duì)象,采用常規(guī)鑄造方法添加Nd、Sm、B合金元素以及復(fù)合加入Nd和B元素,旨在提高H62黃銅的力學(xué)性能和耐蝕性能。本文采用金相顯微鏡、掃描電鏡(SEM)、X-射線能譜分析(EDS)、X-射線衍射(XRD)、拉伸實(shí)驗(yàn)、靜態(tài)腐蝕試驗(yàn)和電化學(xué)腐蝕試驗(yàn)等手段來(lái)研究合金化、細(xì)化變質(zhì)以及復(fù)合處理對(duì)H62黃銅的組織和性能的影響。得到的主要結(jié)論如下:在H62黃銅中添加稀土Nd和Sm元素都使合金的強(qiáng)度、硬度上升。與H62黃銅相比,加入1.0wt.%Nd,抗拉強(qiáng)度和硬度分別提高了17.2%和62.5%;加入1.0wt.%Sm,抗拉強(qiáng)度、屈服強(qiáng)度和硬度分別提高了25.1%、50%和78.1%。向黃銅中加入Nd和Sm后,合金的金相組織相差不大,均由長(zhǎng)條狀或塊狀的α-Cu0.64Zn0.36相和短棒狀的β′-CuZn相組成。其中Nd和Sm的添加量均為1.0wt.%時(shí),β′-Cu Zn相平均晶粒尺寸分別為30μm和20μm,合金組織都得到細(xì)化,但Sm對(duì)H62黃銅的細(xì)化效果比Nd明顯。Nd和Sm加入到H62黃銅中,改變了β′相的分布和尺寸,在黃銅中,β′相的強(qiáng)度和硬度高,使H62黃銅的抗拉強(qiáng)度和硬度提高。同時(shí),加入Nd和Sm后,H62黃銅的腐蝕電位得到提高,靜態(tài)腐蝕速率和腐蝕電流密度下降,其耐蝕性能提高。與H62黃銅相比,Nd添加量為1.0wt.%時(shí),腐蝕電位提高了43.9%,靜態(tài)腐蝕速率和腐蝕電流密度分別下降了31.3%和1.8%;Sm添加量為1.0wt.%時(shí),腐蝕電位提高了6.8%,靜態(tài)腐蝕速率和腐蝕電流密度分別下降了19.6%和1.5%。向H62黃銅中加入B元素,合金微觀組織中α-Cu0.64Zn0.36相由長(zhǎng)條狀轉(zhuǎn)變?yōu)榈容S狀,β′-CuZn相較H62黃銅減少,分布在晶界處。B元素的添加量為0.1wt.%時(shí),合金組織中出現(xiàn)少量的等軸晶,平均晶粒尺寸為30μm。此時(shí)合金的塑性提高,抗拉強(qiáng)度和硬度下降,與H62黃銅相比,塑性提高了17.6%,抗拉強(qiáng)度和硬度分別下降了10.1%和12.5%。B的原子半徑遠(yuǎn)小于Zn的原子半徑,黃銅發(fā)生脫鋅腐蝕時(shí),B可以填充Zn空位,抑制黃銅的脫鋅腐蝕。當(dāng)B的添加量為0.05wt.%時(shí),H62黃銅的腐蝕電位提高,靜態(tài)腐蝕速率和腐蝕電流密度下降,與H62黃銅相比,腐蝕電位提高了30.1%,靜態(tài)腐蝕速率和腐蝕電流密度分別下降了27.6%和4.5%。將Nd和B復(fù)合加入到H62黃銅,合金的塑性得到提高,抗拉強(qiáng)度和硬度下降。向黃銅中添加Nd和B,合金微觀組織中β′-Cu Zn相較H62黃銅減少,α-Cu0.64Zn0.36相由長(zhǎng)條狀轉(zhuǎn)變?yōu)闃渲。在黃銅中,α相是面心立方結(jié)構(gòu),有較高的塑性,使合金的塑性提高。添加0.05wt.%B+0.2wt.%Nd時(shí),合金的抗拉強(qiáng)度為320MPa,硬度為56HBW,伸長(zhǎng)率為42%,與H62相比,抗拉強(qiáng)度和硬度分別下降了5.3%和12.5%,伸長(zhǎng)率提高了23.5%。此時(shí),合金的腐蝕電位得到提高,靜態(tài)腐蝕速率和腐蝕電流密度下降,其耐蝕性能提高,與H62黃銅相比,腐蝕電位提高了35.0%,靜態(tài)腐蝕速率和腐蝕電流密度分別下降了32%和3.1%。
[Abstract]:It is widely used in industry and life, such as radiators, seabed pipes, pipes and so on. It is because of its good processing technology, corrosion resistance, mechanical properties, electrical conductivity and low price. However, in the process of use, the phenomenon of dezinking corrosion will occur, resulting in the decline of the mechanical properties of brass, so that its service life is greatly reduced. Therefore, the development of high strength and corrosion resistant brass with new ingredients has become the focus of research. This paper takes H62 brass as the research object, adding Nd, Sm, B alloy elements and adding Nd and B elements with conventional casting methods, aiming at improving the mechanical and corrosion resistance of H62 brass. Using metallographic microscope (SEM), X- ray energy spectrum analysis (EDS), X- ray diffraction (XRD), tensile test, static corrosion test and electrochemical corrosion test, the effects of alloying, refining and compound treatment on the microstructure and properties of H62 brass are studied. The main conclusions are as follows: the addition of rare earth Nd to H62 brass and the addition of rare earth Nd are the main conclusions. Sm element makes the strength and hardness of the alloy increase. Compared with H62 brass, the tensile strength and hardness of the alloy are increased by 17.2% and 62.5%, respectively, and the tensile strength, yield strength and hardness are increased by 25.1% respectively. After adding Nd and Sm to the brass, the alloy's metallographic structure is not much different, all from the strip or lump shape. When the addition of Nd and Sm is 1.0wt.%, the average grain size of the beta '-Cu Zn phase is 30 u m and 20 micron, respectively. The microstructure of the alloy is refined, but the refining effect of Sm to H62 brass is better than that of Nd. The distribution and size of the beta' phase are changed, in brass, in brass. At the same time, the tensile strength and hardness of H62 brass are higher, and the corrosion potential of H62 brass is increased after adding Nd and Sm, and the corrosion resistance and corrosion resistance of the H62 brass are improved. The corrosion potential is increased by 43.9% when Nd addition is 1.0wt.%, and the static corrosion rate and the corrosion rate are higher than that of H62 brass. The corrosion current density decreased by 31.3% and 1.8%, respectively, when the addition of Sm was 1.0wt.%, the corrosion potential increased by 6.8%, the static corrosion rate and the corrosion current density decreased by 19.6% and 1.5%. to H62 brass to add B element, and the alpha -Cu0.64Zn0.36 phase changed from the strip to the equiaxed form in the alloy microstructure, and the beta '-CuZn phase was less than the H62 brass. When the amount of.B element added at the grain boundary is 0.1wt.%, a small amount of equiaxed grains appear in the alloy structure. The average grain size is 30 u M. at this time, the plasticity of the alloy increases, the tensile strength and hardness decrease. Compared with the H62 brass, the plasticity is increased by 17.6%, the tensile strength and hardness drop by 10.1% and 12.5%.B, respectively, and the atomic radius is far less than Zn atoms. When the radius and brass are dezine corrosion, B can fill the Zn vacancy and inhibit the dezine corrosion of brass. When the addition of B is 0.05wt.%, the corrosion potential of H62 brass increases, the static corrosion rate and corrosion current density decrease, and the corrosion potential is increased by 30.1% compared with H62 brass, and the static corrosion rate and corrosion current density decrease by 27.6%, respectively. With the addition of Nd and B to H62 brass, the plasticity of the alloy is improved, the tensile strength and hardness decrease. Nd and B are added to the brass, and the microstructure of the alloy is reduced to the H62 brass in the microstructure of the alloy, and the alpha -Cu0.64Zn0.36 phase is transformed from the strip to the dendrite. In brass, the alpha phase is a face centered cubic structure with high plasticity, making alloy. When 0.05wt.%B+0.2wt.%Nd is added, the tensile strength of the alloy is 320MPa, the hardness is 56HBW and the elongation is 42%. The tensile strength and hardness of the alloy decreased by 5.3% and 12.5% respectively compared with the H62. The corrosion potential of the alloy was increased at this time, the corrosion potential and corrosion current density of the alloy decreased, and the corrosion resistance of the alloy was increased. Compared with H62 brass, the corrosion potential increased by 35%, and the static corrosion rate and corrosion current density decreased by 32% and 3.1%. respectively.
【學(xué)位授予單位】:濟(jì)南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG146.11
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊勝利;吳語(yǔ);;黃銅脫鋅腐蝕的研究進(jìn)展[J];世界有色金屬;2011年04期
2 陳一勝;劉堅(jiān)鋒;朱志云;劉永丹;;稀土元素Ce對(duì)HSn62-1黃銅組織和脫鋅腐蝕性能的影響[J];上海有色金屬;2009年01期
3 胥鍇;邱正來(lái);;稀土對(duì)銅及銅合金的影響[J];南方金屬;2008年04期
4 黃小衛(wèi);李紅衛(wèi);王彩鳳;王國(guó)珍;薛向欣;張國(guó)成;;我國(guó)稀土工業(yè)發(fā)展現(xiàn)狀及進(jìn)展[J];稀有金屬;2007年03期
5 李勇;;黃銅脫鋅腐蝕的研究進(jìn)展[J];南方金屬;2005年06期
6 馬壯,狄麗莉,朱玉軍;稀土元素La和Ce對(duì)純銅性能的影響[J];鑄造技術(shù);2005年03期
7 劉國(guó)明,張萌,付紹云;微量稀土La和Y在銅中的分布及對(duì)電導(dǎo)性的影響[J];南昌大學(xué)學(xué)報(bào)(理科版);2005年01期
8 付大軍,趙越超;稀土元素La對(duì)銅導(dǎo)電性及力學(xué)性能的影響[J];有色金屬;2004年04期
9 謝冰,章少華,謝荷茵;稀土在銅及銅基合金中的作用[J];江西有色金屬;2004年03期
10 付大軍,趙越超;稀土元素Ce對(duì)純銅導(dǎo)電性及力學(xué)性能的影響[J];鑄造技術(shù);2004年03期
相關(guān)碩士學(xué)位論文 前1條
1 董旭剛;硼和稀土對(duì)B15白銅合金組織及性能的影響[D];昆明理工大學(xué);2010年
,本文編號(hào):1874901
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1874901.html