鉆削高溫合金的切屑形成機(jī)理及刀具磨損研究
本文選題:高溫合金 + 鉆削 ; 參考:《沈陽理工大學(xué)》2017年碩士論文
【摘要】:高溫合金材料因其強(qiáng)度高、質(zhì)量輕等優(yōu)良力學(xué)性能,被廣泛應(yīng)用于航空航天等領(lǐng)域。然而,由于高溫合金材料各向異性的特征,使其在加工過程中易出現(xiàn)毛刺等缺陷,嚴(yán)重影響其加工精度,特別是孔加工;另外,材料導(dǎo)熱性差且硬度高,這些特點(diǎn)導(dǎo)致其在加工時(shí)刀具磨損嚴(yán)重;這些問題的存在嚴(yán)重影響著高溫合金材料在各個(gè)領(lǐng)域的應(yīng)用和發(fā)展。針對現(xiàn)階段高溫合金材料在切削加工方面存在的問題,為找到鉆削高溫合金時(shí)切削用量與切屑形成及刀具磨損的關(guān)系,本文研究的內(nèi)容包括以下幾個(gè)方面:首先,在研究了麻花鉆的基本結(jié)構(gòu)和幾何參數(shù)基礎(chǔ)上,利用三維建模軟件UG設(shè)計(jì)了鉆頭三維實(shí)體模型。運(yùn)用有限元仿真軟件DEFORM-3D建立鉆頭鉆削仿真模型,選用Usui’s模型為材料磨損模型,設(shè)置步數(shù)、步長、鉆削條件及切削參數(shù),選擇合適迭代方法和求解器,最終實(shí)現(xiàn)了鉆削過程模擬仿真。最后,在不同切削參數(shù)和幾何結(jié)構(gòu)進(jìn)行正交實(shí)驗(yàn),利用有限元仿真軟件DEFORM-3D的后處理分析可以得到鉆削溫度、刀具磨損以及切屑的形態(tài)等數(shù)據(jù),并搭建鉆削實(shí)驗(yàn)研究平臺(tái),利用高速鋼鉆頭和硬質(zhì)合金鉆頭兩種不同的刀具,采用單因素方法得到在鉆削過程中不同刀具、不同切削用量的條件下的刀具磨損變形規(guī)律和切屑形態(tài),并與仿真結(jié)果進(jìn)行對比,我們可得出以下結(jié)論:(1)鉆削高溫合金時(shí)的磨損機(jī)理有磨粒磨損、粘結(jié)磨損、氧化磨損及擴(kuò)散磨損,而磨粒磨損和粘結(jié)磨損是最主要的形式。(2)主切削刃和橫刃是高溫合金GH4169在鉆削過程中溫度較高的區(qū)域,刀具磨損都隨轉(zhuǎn)速和進(jìn)給量的增大而增加,當(dāng)轉(zhuǎn)速和進(jìn)給量增加時(shí),產(chǎn)生的熱量加快,溫度升高,刀具磨損加重。(3)增大切削速度和進(jìn)給量均會(huì)加劇刀具的磨損,但二者相比較而言,增大進(jìn)給量對加劇刀具磨損的作用較小。通過增加進(jìn)給量來提高鉆削高溫合金的切削效率,有利于延長刀具使用壽命、抑制刀具磨損的加劇。(4)高溫合金鉆削后產(chǎn)生的切屑形態(tài)大多呈現(xiàn)為長帶狀的螺卷屑,當(dāng)轉(zhuǎn)速為1000 r/min,進(jìn)給量為0.08mm/r時(shí)硬質(zhì)合金鉆頭產(chǎn)生的切屑最有利于鉆削。切削速度越大,切屑的變形程度越小,更有助于切屑的形成;進(jìn)給量越大,切屑變形系數(shù)也隨著增大,切屑形狀卷曲程度越大,切屑卷曲半徑減小,斷屑效果越好。另外,刀具的頂角及螺旋角對切屑形態(tài)的影響較小。
[Abstract]:High-temperature alloy materials are widely used in aeronautics and spaceflight because of their high strength and light mechanical properties. However, due to the anisotropy of superalloy materials, it is easy to appear burr and other defects in the process of processing, which seriously affects the machining accuracy, especially the hole machining, in addition, the thermal conductivity of the materials is poor and the hardness is high. These characteristics lead to serious tool wear during machining, and the existence of these problems seriously affects the application and development of superalloy materials in various fields. In order to find out the relationship between cutting parameters and chip formation and tool wear, the contents of this paper include the following aspects: first of all, in order to find out the relationship between cutting parameters and chip formation and tool wear during drilling of superalloy materials, the main contents of this paper are as follows: first of all, On the basis of studying the basic structure and geometric parameters of twist drill, the 3D solid model of drill bit is designed by using the 3D modeling software UG. The simulation model of drill bit drilling is established by using the finite element simulation software DEFORM-3D. The Usui's model is selected as the material wear model, the step number, step size, drilling condition and cutting parameters are set up, and the appropriate iterative method and solver are selected. Finally, the simulation of drilling process is realized. Finally, through orthogonal experiments with different cutting parameters and geometric structures, the data of drilling temperature, tool wear and chip shape can be obtained by post-processing analysis of finite element simulation software DEFORM-3D, and a drilling experimental research platform is built. By using two different cutting tools, high speed steel bit and cemented carbide bit, single factor method is used to obtain the wear deformation law and chip shape of cutting tool with different cutting tools and different cutting parameters during drilling. Compared with the simulation results, we can draw the following conclusion: the wear mechanism of drilling superalloy is abrasive wear, bond wear, oxidation wear and diffusion wear. The abrasive wear and bond wear are the most important form. (2) the main cutting edge and the chisel edge are the regions with higher temperature in the drilling process of superalloy GH4169. The tool wear increases with the increase of speed and feed rate, and when the rotational speed and feed rate increase, The increase of cutting speed and feed rate will increase the wear of cutting tool, but the increase of feed rate has little effect on the increase of tool wear. By increasing the feed rate to improve the cutting efficiency of drilling superalloy, it is beneficial to prolong the tool service life and restrain the aggravation of tool wear. When the speed is 1000 r / min and the feed rate is 0.08mm/r, the chip produced by the cemented carbide bit is most favorable for drilling. The larger the cutting speed is, the smaller the chip deformation degree is, and the more the feed is, the larger the chip deformation coefficient is, the larger the chip shape crimp degree is, the smaller the chip crimp radius is, and the better the chip breaking effect is. In addition, the tip angle and helical angle of the cutting tool have little effect on the chip shape.
【學(xué)位授予單位】:沈陽理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG52
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 沈汛;孫劍飛;陳五一;;鎳基高溫合金高速切削加工性[J];工具技術(shù);2014年12期
2 朱紅霞;沈興全;張利新;;準(zhǔn)干式深孔鉆削中溫度場與刀具磨損的仿真研究[J];機(jī)械設(shè)計(jì)與制造;2014年02期
3 李楠;吳伏家;;BTA深孔鉆削智能糾偏技術(shù)研究[J];機(jī)械設(shè)計(jì)與制造;2013年01期
4 孔凡霞;張德遠(yuǎn);;高溫合金微量潤滑振動(dòng)鉆削溫度與刀具磨損[J];北京航空航天大學(xué)學(xué)報(bào);2012年06期
5 孫克江;;淺談高溫合金的切削加工[J];科技與企業(yè);2012年01期
6 劉麗娟;張國永;邵華;;高溫合金NiCr20TiAl鉆削加工特性研究[J];工具技術(shù);2011年11期
7 張彬;肖德明;;高溫合金GH4169深孔加工研究現(xiàn)狀及展望[J];機(jī)械研究與應(yīng)用;2011年03期
8 高興軍;李萍;閆鵬飛;鄒平;;基于Deform 3D不銹鋼鉆削機(jī)理的仿真研究[J];工具技術(shù);2011年04期
9 高興軍;鄒平;;高溫合金振動(dòng)鉆削斷屑實(shí)驗(yàn)研究及機(jī)理分析[J];工具技術(shù);2010年12期
10 楊軍;周利平;吳能章;;基于Deform 3D的鉆削力仿真研究[J];工具技術(shù);2007年04期
相關(guān)博士學(xué)位論文 前3條
1 李軍利;鎳基高溫合金整體葉輪高效加工應(yīng)用基礎(chǔ)研究[D];上海交通大學(xué);2012年
2 喬陽;高效切削粉末冶金高溫合金的加工性研究[D];山東大學(xué);2011年
3 吳健;典型難加工材料鉆削相關(guān)技術(shù)的基礎(chǔ)研究[D];哈爾濱工業(yè)大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 汪建鴻;基于有限元分析的標(biāo)準(zhǔn)麻花鉆特性研究[D];蘭州交通大學(xué);2015年
2 胡超;GH4698鎳基高溫合金熱塑性變形行為研究[D];哈爾濱工業(yè)大學(xué);2015年
3 賀生明;高溫合金718材料超細(xì)長深孔鉆削工藝研究[D];西安石油大學(xué);2013年
4 呂紹瑜;鎳基高溫合金高速銑削加工表面完整性研究[D];山東大學(xué);2013年
5 馮振興;涂層硬質(zhì)合金刀具切削鐵基高溫合金試驗(yàn)研究[D];大連理工大學(xué);2013年
6 魏良耀;碳纖維復(fù)合材料鉆削軸向力及刀具磨損的試驗(yàn)研究[D];南京理工大學(xué);2013年
7 閆鵬飛;不銹鋼鉆削加工有限元仿真及試驗(yàn)研究[D];東北大學(xué);2010年
8 申濤;麻花鉆切削過程中后刀面干涉問題的仿真研究[D];大連工業(yè)大學(xué);2010年
9 史德峰;置氫鈦合金TC4高速切削刀具磨損有限元仿真分析[D];南京航空航天大學(xué);2010年
10 時(shí)林;麻花鉆結(jié)構(gòu)參數(shù)及刃磨方法的研究[D];江南大學(xué);2006年
,本文編號:1865518
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1865518.html