整體葉盤構(gòu)件數(shù)控磨削工藝關(guān)鍵技術(shù)研究
本文選題:磨削加工 + 整體葉盤。 參考:《西北工業(yè)大學(xué)》2016年博士論文
【摘要】:隨著整體葉盤結(jié)構(gòu)件在航空、航天、船舶、能源、核工業(yè)等領(lǐng)域的重大裝備中得到廣泛應(yīng)用,其加工制造工藝技術(shù)也得到飛速發(fā)展。但是,相對于目前已經(jīng)成熟的整體葉盤構(gòu)件粗加工工藝技術(shù),其精加工磨削工藝依然處于落后的人工打磨階段,人工經(jīng)驗打磨質(zhì)量一致性差、均勻性差,且加工效率十分低下,不僅影響整體葉盤結(jié)構(gòu)件的疲勞壽命,而且制約發(fā)動機(jī)的生產(chǎn)制造周期。因此,開展整體葉盤自動化磨削技術(shù)研究,建立其高效可靠的磨削工藝方法,以擺脫傳統(tǒng)落后的人工打磨工藝方法,對提高整體葉盤疲勞性能和生產(chǎn)效率、研究和建立自動化生產(chǎn)線的等都具有十分重要的意義。本文針對整體葉盤結(jié)構(gòu)件人工打磨工藝質(zhì)量差、效率低等問題,基于自主設(shè)計的整體葉盤數(shù)控磨削實驗平臺,通過分析整體葉盤磨削工藝中面臨的問題挑戰(zhàn),開展整體葉盤數(shù)控磨削工藝關(guān)鍵技術(shù)研究,深入研究磨削過程中的接觸狀態(tài)、磨削力狀態(tài)、磨削工藝條件等,并結(jié)合工藝實驗驗證理論分析的可靠性,論文的主要研究工作與獲得的主要結(jié)論如下:(1)基于整體葉盤結(jié)構(gòu)特點,分析整體葉盤磨削加工中面臨的主要難點與問題,結(jié)合人工打磨加工方法經(jīng)驗,并考慮其后續(xù)一體化自動生產(chǎn)線的設(shè)計建立,提出適應(yīng)整體葉盤特點的數(shù)控磨削加工工藝方法,分析說明整體葉盤數(shù)控磨削實驗平臺的結(jié)構(gòu)及組成部分,并著重對磨削實驗平臺的柔性磨削主軸機(jī)構(gòu)展開深入研究,闡述其結(jié)構(gòu)特點與裝配形式,對該關(guān)鍵機(jī)構(gòu)的工作原理進(jìn)行說明,建立其工作范圍與工作位姿的理論計算公式,最終形成整體葉盤自動化磨削加工工藝?yán)碚摲椒ā?2)依據(jù)數(shù)控砂帶磨削工藝基礎(chǔ)理論知識,對磨削工藝過程中磨具與工件之間的接觸狀態(tài)進(jìn)行理論分析,主要包括接觸區(qū)域特征、接觸區(qū)域壓力分布狀態(tài)、材料去除率等內(nèi)容研究,采用接觸加工實驗,分別研究磨料粒度、磨具接觸曲率、主軸轉(zhuǎn)速、理論磨削深度、工件曲率半徑等因素對接觸區(qū)域特征的影響規(guī)律,并基于赫茲彈性接觸理論,從凸面接觸與凹面接觸兩個方面,分析并建立磨削接觸區(qū)域各點處的壓力分布狀態(tài)方程,最后進(jìn)行基于Preston方程的磨削加工材料去除率模型研究,分別得到凸面接觸與凹面接觸形式下的材料去除率方程,并獲得材料去除率方程修正系數(shù),實驗結(jié)果表明材料去除率模型具有較高的可靠性。(3)分析說明整體葉盤磨削工藝過程中磨削力的作用形式,依據(jù)傳統(tǒng)砂帶磨削法向磨削力經(jīng)驗公式,并基于數(shù)控磨削實驗平臺柔性主軸機(jī)構(gòu)的工作原理,提出磨削力間接控制方法,對間接控制過程進(jìn)行理論分析、簡化并建立控制系統(tǒng)數(shù)學(xué)模型,而且充分考慮實際系統(tǒng)中存在的非線性、不確定性、不穩(wěn)定性、復(fù)雜性等因素,采用模糊PID算法對系統(tǒng)進(jìn)行控制,選用變角度三角隸屬函數(shù),建立其模糊控制規(guī)則,對控制系統(tǒng)進(jìn)行仿真分析,并與傳統(tǒng)PID控制效果進(jìn)行對比,結(jié)果表明,模糊PID磨削力間接控制獲得高響應(yīng)速率、低超調(diào)量的控制效果,最后通過仿真分析負(fù)載質(zhì)量對控制系統(tǒng)的影響情況,進(jìn)一步驗證控制方法具有較高的適應(yīng)性和理想的控制效果。最后,通過比例閥壓力傳感器數(shù)據(jù)檢測,建立磨削過程中法向磨削力的計算公式。(4)對整體葉盤磨削質(zhì)量表征參數(shù)與加工參數(shù)進(jìn)行分析,結(jié)合整體葉盤加工質(zhì)量要求,選取表面完整性若干參數(shù)作為對整體葉盤磨削工藝優(yōu)劣的評價指標(biāo),并開展加工參數(shù)對表面完整性指標(biāo)的單因素實驗研究,掌握加工參數(shù)對各指標(biāo)的影響規(guī)律,進(jìn)而采用正交方法設(shè)計實驗,對實驗檢測結(jié)果進(jìn)行分析處理,建立表面完整性各評價指標(biāo)的指數(shù)經(jīng)驗公式,最終展開磨削工藝過程加工參數(shù)優(yōu)化,將優(yōu)化問題進(jìn)行線性處理并提出約束條件,獲得在不同目標(biāo)函數(shù)下的優(yōu)化磨削加工參數(shù)組合。(5)分別展開磨削工藝中實際磨削深度、磨削力控制、加工參數(shù)優(yōu)化等研究內(nèi)容的加工實驗驗證,實驗結(jié)果證明了磨削關(guān)鍵機(jī)構(gòu)對主軸位姿微位移調(diào)節(jié)的有效性、模糊PID控制方法對法向磨削力間接控制的可靠性等;同時實驗結(jié)果表明,磨削力控制加工質(zhì)量明顯提高,而相對于人工經(jīng)驗打磨與經(jīng)驗參數(shù)磨削加工,在優(yōu)化加工參數(shù)磨削條件下,工件加工表面質(zhì)量得到明顯改善,且加工效率獲得顯著提高。
[Abstract]:With the wide application of the whole disc structural parts in the fields of aviation, space, ship, energy, nuclear industry and other fields, the processing and manufacturing technology has also been developed rapidly. However, relative to the present mature whole leaf disk component rough machining technology, its precision grinding process is still in the backward artificial grinding order. With poor quality consistency, poor uniformity and low processing efficiency, the artificial experience not only affects the fatigue life of the whole leaf disc structural parts, but also restricts the production cycle of the engine. Therefore, the research on the automatic grinding technology of the whole leaf disc is carried out and the high efficiency and reliable grinding process is established to get rid of the traditional backward people. It is of great significance to improve the fatigue performance and production efficiency of the whole leaf disc and to establish the automatic production line. This paper aims at the problems of poor quality and low efficiency of the artificial grinding process of the whole leaf disc structural parts. Based on the independent design of the whole body disc CNC grinding experiment platform, the whole system is analyzed as a whole. In the process of disc grinding, the key technology of the whole disc CNC grinding process is studied. The contact state, the grinding force state and the grinding process conditions are deeply studied in the grinding process, and the reliability of the theoretical analysis is verified by the experimental verification. The main conclusions are as follows: (1) the main conclusions are as follows: (1) The main difficulties and problems in the grinding process of the whole leaf disc are analyzed, and the main difficulties and problems in the grinding process of the whole leaf disc are analyzed. The design and establishment of the integrated automatic production line are set up in consideration of the experience of the artificial grinding processing method. The numerical control grinding process method adapted to the characteristics of the whole leaf disc is put forward, and the experimental platform of the whole blade NC grinding is analyzed and explained. The structure and components are studied, and the flexible grinding spindle mechanism of grinding experiment platform is studied in depth, its structure features and assembly forms are expounded, the working principle of the key mechanism is explained, the theoretical calculation formula of its working range and working position is established, and the theoretical side of the automatic grinding process of the whole leaf disc is formed. (2) according to the theoretical knowledge of CNC Abrasive belt grinding process, the contact state between the grinding tool and the workpiece in the grinding process is theoretically analyzed, including the contact area characteristics, the contact area pressure distribution state, the material removal rate and so on. The contact machining experiments are used to study the abrasive grain size and the contact curvature of the grinding tool. The influence of the spindle speed, the theoretical grinding depth and the workpiece curvature radius on the contact area characteristics, and based on the Hertz elastic contact theory, from two aspects of the contact and the concave contact of the convex surface, analyze and establish the state equation of the pressure distribution at the contact area of the grinding contact area. Finally, the grinding material based on the Preston equation is carried out. The removal rate equation of the material removal rate is obtained, and the correction coefficient of the material removal rate equation is obtained. The experimental results show that the material removal rate model has high reliability. (3) analysis shows the form of the grinding force in the whole process of grinding disc grinding, according to the traditional abrasive belt grinding method. Based on the empirical formula of grinding force, and based on the working principle of the flexible spindle mechanism of the NC grinding experiment platform, the indirect control method of grinding force is put forward, the indirect control process is analyzed theoretically, and the mathematical model of the control system is simplified and established, and the nonlinear, uncertainty, instability, complexity and so on in the actual system are fully considered. The fuzzy PID algorithm is used to control the system, and the variable angle trigonometric membership function is selected to establish its fuzzy control rules. The control system is simulated and analyzed. The result shows that the indirect control of the fuzzy PID grinding force can obtain the high response rate and the control effect of the low overshoot, and finally through the simulation. The influence of the load quality on the control system is analyzed, and the control method is further verified that the control method has high adaptability and ideal control effect. Finally, the calculation formula of the normal grinding force in the grinding process is established through the data detection of the proportional valve pressure sensor. (4) the analysis of the quality characterization parameters and the processing parameters of the overall blade grinding quality and the processing parameters are analyzed. A number of parameters of surface integrity are selected as the evaluation indexes for the grinding process of the whole leaf plate, and a single factor experimental study on the surface integrity index of the processing parameters is carried out. The influence law of the processing parameters on the indexes is grasps, and then the orthogonal method is used to design the experiment. The index empirical formula of the evaluation indexes of surface integrity is established, and the optimization of the processing parameters of the grinding process is finally carried out. The optimization problem is linearly treated and the constraint conditions are put forward to obtain the optimum grinding parameters combination under different target functions. (5) the actual grinding depth and grinding in grinding process are carried out respectively. The experimental results prove the effectiveness of the grinding key mechanism to the adjustment of the spindle position and position, and the reliability of the indirect control of the normal grinding force by the fuzzy PID control method, and the experimental results show that the quality of the grinding force control machining is obviously improved and relative to the manual work. With the experience grinding and the experience parameter grinding, the surface quality of the workpiece is obviously improved and the processing efficiency is greatly improved under the optimized grinding conditions.
【學(xué)位授予單位】:西北工業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TG596
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;又一種代替研與刮的新工藝:點磨削工藝[J];機(jī)床與工具;1959年22期
2 鄧朝暉,曹德芳;磨削工藝過程預(yù)報系統(tǒng)的研究[J];金剛石與磨料磨具工程;2003年02期
3 王新忠;;普通磨床超精度磨削工藝及工藝參數(shù)選擇[J];上海工程技術(shù)大學(xué)學(xué)報;2005年04期
4 曹德芳;鄧朝暉;;磨削工藝過程預(yù)報模型表達(dá)式的識別及計算處理[J];機(jī)械制造;2007年01期
5 修世超;馮強(qiáng);王瑤;;磨削工藝綠色度評價指標(biāo)體系及影響因素分析[J];金剛石與磨料磨具工程;2007年03期
6 付啟明;;經(jīng)濟(jì)的齒輪端面磨削工藝[J];現(xiàn)代零部件;2009年02期
7 張運強(qiáng);;多方軸磨削工藝分析[J];工具技術(shù);2009年03期
8 羅亞軍;;淺談磨削工藝研究與應(yīng)用[J];黑龍江科技信息;2011年01期
9 李志棟;趙曉云;潘西俠;;超薄套筒類零件內(nèi)孔磨削工藝[J];新技術(shù)新工藝;2011年08期
10 潘澤華;趙敬文;朱振峰;;扇齒磨削工藝的開發(fā)與應(yīng)用[J];汽車零部件;2013年02期
相關(guān)會議論文 前3條
1 唐經(jīng)球;;薄片形非金屬零件的磨削工藝[A];中國電子學(xué)會生產(chǎn)技術(shù)學(xué)分會機(jī)械加工專業(yè)委員會第八屆學(xué)術(shù)年會論文集[C];2001年
2 李春林;;磨削工藝參數(shù)的計算機(jī)輔助優(yōu)化設(shè)計[A];中國電子學(xué)會生產(chǎn)技術(shù)學(xué)分會機(jī)械加工專業(yè)委員會第八屆學(xué)術(shù)年會論文集[C];2001年
3 全博文;李權(quán);周慶波;;高精度軋輥磨削工藝研究[A];第三屆十省區(qū)市機(jī)械工程學(xué)會科技論壇暨黑龍江省機(jī)械工程學(xué)會2007年年會論文(摘要)集[C];2007年
相關(guān)重要報紙文章 前1條
1 劉建平;上海機(jī)床國家支撐項目《干凍磨削工藝研究》通過驗收[N];中國工業(yè)報;2009年
相關(guān)博士學(xué)位論文 前3條
1 段繼豪;整體葉盤構(gòu)件數(shù)控磨削工藝關(guān)鍵技術(shù)研究[D];西北工業(yè)大學(xué);2016年
2 周秦源;磨削工藝系統(tǒng)的動態(tài)特性及應(yīng)用研究[D];湖南大學(xué);2013年
3 張貝;磨粒切厚可控的脆性材料延性域磨削基礎(chǔ)研究[D];南京航空航天大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 柯鐳;ELID磨削工藝決策系統(tǒng)研究[D];西安工業(yè)大學(xué);2014年
2 張益闊;快速點磨削磨削工藝實驗研究[D];東北大學(xué);2014年
3 劉偉強(qiáng);汽車軸類零件高效磨削工藝參數(shù)優(yōu)化實驗研究與應(yīng)用[D];東華大學(xué);2013年
4 馮強(qiáng);磨削工藝綠色度評價方法與系統(tǒng)的研究與開發(fā)[D];東北大學(xué);2007年
5 葉軍紅;復(fù)雜刀具磨削工藝數(shù)據(jù)庫系統(tǒng)的研究與開發(fā)[D];華中科技大學(xué);2012年
6 蘇旭峰;高溫合金渦輪葉片緩進(jìn)磨削工藝研究[D];上海交通大學(xué);2009年
7 李紅棟;碳化硅承載臺磨削工藝參數(shù)的優(yōu)化研究[D];哈爾濱理工大學(xué);2014年
8 馮煥琴;基于線切割機(jī)的線電極放電磨削工藝的研究[D];吉林大學(xué);2004年
9 覃國杰;曲軸磨削工藝對曲軸質(zhì)量影響的研究[D];上海交通大學(xué);2009年
10 于金振;基于CBR-RBR的滾動軸承磨削工藝專家系統(tǒng)研究[D];湖南大學(xué);2010年
,本文編號:1830607
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1830607.html