薄壁件側(cè)銑變形數(shù)值建模及實驗研究
本文選題:薄壁件 + 熱力耦合變形仿真。 參考:《哈爾濱工業(yè)大學》2017年碩士論文
【摘要】:薄壁類零件廣泛應用于航空航天、汽車制造等領域。尤其是在航空航天領域,對薄壁類零件的加工精度有著極高的要求。由于薄壁類零件具有材料去除率高、結(jié)構(gòu)剛性差等特點,在進行銑削加工時極易產(chǎn)生加工變形,這使得高精度薄壁類零件的加工制造成為了行業(yè)難點問題。本課題從減小薄壁件側(cè)銑變形加工誤差的角度出發(fā),旨在通過對薄壁件側(cè)銑變形規(guī)律和控制方法的研究,探索高精度薄壁類零件的制造方法,為實際加工生產(chǎn)和應用奠定基礎。銑削力和銑削熱是薄壁件側(cè)銑變形的主要影響因素,針對這兩種主要影響因素,本文通過分析對比幾種經(jīng)典的銑削力理論模型的優(yōu)缺點,結(jié)合薄壁件側(cè)銑加工方式的特點,建立了基于單位銑削力系數(shù)的力學模型。通過對比不同的溫度場建模方式,分析了銑削過程中瞬時切屑厚度的變化規(guī)律,建立了基于Jeager正交切削移動熱源帶模型的薄壁件側(cè)銑銑削溫度預測模型,并利用Matlab模擬了銑削溫度場的變化過程。通過銑削加工正交實驗測定出不同銑削參數(shù)下的銑削力、銑削熱、參考點變形量和已加工工件表面誤差,根據(jù)實驗數(shù)據(jù)計算出銑削力和銑削熱模型中的相關系數(shù),并將理論值與實驗值進行對比分析,驗證了理論模型的有效性。分析了不同銑削參數(shù)與銑削變形量之間內(nèi)在聯(lián)系,得出了較好的銑削參數(shù)組合。通過ANSYS參數(shù)化編程的方法編寫了集幾何建模、刀具走刀、材料去除于一體的薄壁件側(cè)銑動態(tài)仿真程序,建立了側(cè)銑變形分析模型。通過合理的假設和簡化建立了薄壁件側(cè)銑變形有限元分析模型,對比了只施加力載荷和熱力耦合作用時薄壁件的變形規(guī)律,將仿真值與實驗值進行對比,驗證了薄壁件側(cè)銑變形數(shù)值模擬的有效性。利用薄壁側(cè)銑變形數(shù)值模擬的數(shù)據(jù),建立了基于BP神經(jīng)網(wǎng)絡的變形預測模型和銑削參數(shù)優(yōu)化模型。運用Matlab編寫了BP神經(jīng)網(wǎng)絡薄壁件側(cè)銑變形預測程序,用實驗數(shù)據(jù)和已建立的BP神經(jīng)網(wǎng)絡變形預測模型,建立了基于遺傳算法的銑削參數(shù)優(yōu)化模型。對銑削參數(shù)進行了優(yōu)化,通過銑削參數(shù)優(yōu)化實驗驗證了優(yōu)化模型的有效性。
[Abstract]:Thin-wall parts are widely used in aerospace, automobile manufacturing and other fields. Especially in the field of aeronautics and astronautics, the machining accuracy of thin-wall parts is very high. Due to the characteristics of high material removal rate and poor structural rigidity, thin-walled parts are easy to produce machining deformation in milling, which makes the manufacture of high-precision thin-walled parts become a difficult problem in the industry. From the point of view of reducing the machining error of side milling deformation of thin-walled parts, this paper aims at exploring the manufacturing methods of high-precision thin-walled parts by studying the law and control methods of side-milling deformation of thin-walled parts, which will lay a foundation for practical processing, production and application. Milling force and milling heat are the main influencing factors of side milling deformation of thin-walled parts. In view of these two main influencing factors, this paper analyzes and compares the advantages and disadvantages of several classical theoretical models of milling force, combined with the characteristics of side milling of thin-walled parts. A mechanical model based on unit milling force coefficient is established. By comparing different modeling methods of temperature field, the variation law of instantaneous chip thickness in milling process is analyzed, and the prediction model of side milling temperature of thin-walled parts based on Jeager orthogonal cutting moving heat source belt model is established. The change process of milling temperature field is simulated by Matlab. The milling force, milling heat, reference point deformation and the surface error of the machined workpiece are determined by orthogonal milling experiment. The milling force and the correlation coefficient in the milling heat model are calculated according to the experimental data. The validity of the theoretical model is verified by comparing the theoretical value with the experimental value. The internal relationship between different milling parameters and milling deformation is analyzed, and a better milling parameter combination is obtained. A dynamic simulation program for side milling of thin-walled parts is developed by means of ANSYS parameterized programming, which integrates geometric modeling, tool walking and material removal, and an analysis model of side milling deformation is established. Through reasonable assumption and simplification, the finite element analysis model of side milling deformation of thin-walled parts is established, and the deformation law of thin-walled parts under the coupling of force and heat is compared, and the simulation value is compared with the experimental value. The effectiveness of numerical simulation of side milling deformation of thin wall parts is verified. The deformation prediction model and milling parameter optimization model based on BP neural network are established based on the numerical simulation data of thin-walled side milling deformation. A BP neural network program for predicting the side milling deformation of thin-walled parts is compiled by using Matlab. Based on the experimental data and the established BP neural network deformation prediction model, the optimization model of milling parameters based on genetic algorithm is established. The milling parameters are optimized and the validity of the optimization model is verified by the experiment of milling parameters optimization.
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TG54
【相似文獻】
相關期刊論文 前10條
1 宮文強,冷長庚,劉立和;輔助支承在薄壁件加工中的應用[J];機械制造;2004年01期
2 李文;一種高精度環(huán)形薄壁件工藝方法的探討[J];機械工人.冷加工;2004年04期
3 袁春曉,馮曉露;一種校直磨削加工中薄壁件變形的方法[J];機械制造;2004年12期
4 張同保;蘇曉佳;劉玉卿;侯濤;;防止薄壁件深沖棱子的工藝措施[J];金屬熱處理;2007年09期
5 陳蔚芳;樓佩煌;陳華;;薄壁件加工變形主動補償方法[J];航空學報;2009年03期
6 汪濤;賈愛青;;大型高精度薄壁件的以車代磨試驗[J];金屬加工(冷加工);2009年04期
7 石明良;;巧卸薄壁件[J];機械工人技術資料;1975年12期
8 高志祥;談談薄壁件的定義域[J];航空標準化;1982年04期
9 吳鳴玉;;薄壁件縱焊縫焊接機[J];機械設計與制造;1990年02期
10 尹三元,張喜春;大直徑薄壁件的磨削[J];機械工人.冷加工;1991年11期
相關會議論文 前10條
1 萬秀屏;譚薇;范鑫;馮欣明;文寶林;;某大型薄壁件車加工變形質(zhì)量控制[A];第九屆沈陽科學學術年會論文集(信息科學與工程技術分冊)[C];2012年
2 李燕;董愛娟;;加工薄壁件安裝面工藝探討[A];2009全國機電企業(yè)工藝年會<廈工杯>工藝征文論文集[C];2009年
3 廖勇軍;;薄壁件網(wǎng)格技術及計算經(jīng)濟性研究[A];2013中國汽車工程學會年會論文集[C];2013年
4 韓曉光;張鳳英;翟婷婷;;空間曲面薄壁件柔性裝配定位系統(tǒng)設計與實現(xiàn)[A];第十五屆中國科協(xié)年會第13分會場:航空發(fā)動機設計、制造與應用技術研討會論文集[C];2013年
5 彭昌永;高福全;范如源;;鋁合金薄壁件的點焊及表面處理[A];中國工程物理研究院科技年報(2003)[C];2003年
6 欒宇;解潤鋒;;大型薄壁件-轉(zhuǎn)輪室精加工分析[A];第七屆(2009)中國鋼鐵年會論文集(下)[C];2009年
7 劉宇;傅戈雁;石世宏;王晨;;光內(nèi)送粉激光熔覆堆積扭曲薄壁件工藝參數(shù)的控制[A];第15屆全國特種加工學術會議論文集(下)[C];2013年
8 曹栩;駱合力;李尚平;張喜娥;馮滌;;Ni_3Al基合金薄壁件熔模精鑄工藝研究[A];動力與能源用高溫結(jié)構(gòu)材料——第十一屆中國高溫合金年會論文集[C];2007年
9 梁朝堅;;鋁合金薄壁件鑄件變形研究分析[A];2009重慶市鑄造年會論文集[C];2009年
10 丁春艷;楊振國;;聚碳酸酯薄壁件分層失效機制的研究[A];2007年中國機械工程學會年會論文集[C];2007年
相關博士學位論文 前10條
1 陳W,
本文編號:1803801
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1803801.html