基于動(dòng)態(tài)特性分析的機(jī)床結(jié)合部建模及結(jié)構(gòu)的改進(jìn)設(shè)計(jì)
本文選題:結(jié)合部建模 + 動(dòng)剛度; 參考:《北京交通大學(xué)》2017年碩士論文
【摘要】:機(jī)床的發(fā)展水平和技術(shù)標(biāo)準(zhǔn)直接反映了一個(gè)國家制造業(yè)的發(fā)展趨勢(shì),也是國家工業(yè)化方面綜合國力的評(píng)價(jià)標(biāo)準(zhǔn)之一。建立機(jī)床準(zhǔn)確的動(dòng)力學(xué)模型是研究機(jī)床動(dòng)態(tài)加工特性和結(jié)構(gòu)優(yōu)化設(shè)計(jì)的前提和基礎(chǔ)。機(jī)床整機(jī)的動(dòng)力學(xué)特性在很大程度上都要受到機(jī)床內(nèi)各個(gè)部位螺栓結(jié)合部的影響,而螺栓結(jié)合部的建模又是難點(diǎn)問題,研究者大多將精力放在了機(jī)床的整機(jī)建模方面,忽略了對(duì)結(jié)合部處建模方法的研究,對(duì)相關(guān)問題的研究也不夠深入。因此探究機(jī)床螺栓結(jié)合部處的建模方法和結(jié)合部處參數(shù)識(shí)別方法具有重要的工程意義和理論價(jià)值。本文主要研究了含有螺栓結(jié)合部的機(jī)床動(dòng)力學(xué)模型的建模,主要包括螺栓結(jié)合部的建模過程和結(jié)合部處參數(shù)求解的過程,并對(duì)已建立好的動(dòng)力學(xué)模型進(jìn)行了結(jié)構(gòu)的優(yōu)化設(shè)計(jì)與分析。具體內(nèi)容如下:首先,設(shè)計(jì)了簡(jiǎn)單的螺栓結(jié)合部試驗(yàn)試件,并得到實(shí)物模型以此來研究建模方法和參數(shù)識(shí)別方法。確定采用彈簧單元來建立結(jié)合部模型的方法,以彈簧單元均勻分布為基礎(chǔ)探究了彈簧單元圓周分布的建模方法,經(jīng)對(duì)比分析最終確定了圓周分布建模方法的彈簧單元個(gè)數(shù)和等效直徑的大小。采用有限元仿真分析與模態(tài)試驗(yàn)相結(jié)合的方法對(duì)試驗(yàn)試件的螺栓結(jié)合部模型中彈簧單元的剛度進(jìn)行了參數(shù)識(shí)別,并通過改變預(yù)緊力矩的方式驗(yàn)證了該識(shí)別方法的正確性。其次,根據(jù)吉村允孝思想,將結(jié)合部的建模方法和剛度識(shí)別方法應(yīng)用到結(jié)合部平均接觸面壓相等的機(jī)床床身地腳結(jié)合部的動(dòng)力學(xué)模型中,識(shí)別出了地腳結(jié)合部處的動(dòng)剛度值。然后對(duì)含有地腳結(jié)合部的機(jī)床進(jìn)行試驗(yàn)?zāi)B(tài)分析,對(duì)比仿真結(jié)果和實(shí)驗(yàn)結(jié)果證明了誤差在允許范圍內(nèi),即證明該方法的建模和剛度識(shí)別是有效的。最終確立了含有地腳結(jié)合部的機(jī)床動(dòng)力學(xué)建模方案。最后,運(yùn)用有限元分析仿真方法,對(duì)機(jī)床的床身進(jìn)行了動(dòng)力學(xué)性能的分析,確定其薄弱環(huán)節(jié)為內(nèi)部肋板,然后運(yùn)用ANSYS Workbench中的結(jié)構(gòu)優(yōu)化設(shè)計(jì)模塊,通過對(duì)床身中肋板尺寸和位置的分析,完成了床身結(jié)構(gòu)的設(shè)計(jì)優(yōu)化,提高了整體的動(dòng)力學(xué)特性,減輕了床身的質(zhì)量,節(jié)約了生產(chǎn)成本。該方法可以推廣到機(jī)床其他部件的結(jié)構(gòu)優(yōu)化設(shè)計(jì)中,從而為機(jī)床結(jié)構(gòu)的改進(jìn)和優(yōu)化設(shè)計(jì)提供了重要方法和依據(jù)。
[Abstract]:The development level and technical standard of machine tools directly reflect the development trend of a country's manufacturing industry, and are also one of the evaluation standards of national comprehensive national strength in industrialization. Establishing accurate dynamic model of machine tool is the premise and foundation of studying dynamic machining characteristics and structural optimization design of machine tool. To a great extent, the dynamic characteristics of the machine tool are affected by the bolt joint in each part of the machine tool, and the modeling of the bolt joint part is a difficult problem. Researchers mostly focus on the modeling of the machine tool. The research on the modeling method of the junction is neglected, and the research on the related problems is not deep enough. Therefore, it is of great engineering significance and theoretical value to explore the modeling method and parameter identification method of machine tool bolt joint. In this paper, the modeling of machine tool dynamic model with bolt joint is studied, which includes the modeling process of bolt joint and the process of solving the parameters of the joint. The structural optimization design and analysis of the established dynamic model are also carried out. The main contents are as follows: firstly, a simple bolted joint test specimen is designed, and the physical model is obtained to study the modeling method and parameter identification method. The method of establishing the joint model by spring element is determined. Based on the uniform distribution of spring element, the modeling method of circular distribution of spring element is explored. Finally, the number of spring elements and the size of equivalent diameter of the circular distribution modeling method are determined by comparison and analysis. The stiffness of the spring element in the bolt joint model of the test specimen is identified by the method of finite element simulation and modal test, and the correctness of the identification method is verified by changing the preload moment. Secondly, according to the thought of Yoshimura Yunxiao, the modeling method and stiffness identification method of the joint part are applied to the dynamic model of the joint of the machine bed with equal average contact surface pressure, and the dynamic stiffness value of the joint part of the ground foot is identified. Then the experimental modal analysis of the machine tool with the joint of the ground foot is carried out. The simulation results and the experimental results show that the error is within the allowable range, that is to say, the modeling and stiffness identification of the method is effective. Finally, the dynamic modeling scheme of machine tool with the joint of ground foot is established. Finally, the finite element analysis and simulation method is used to analyze the dynamic performance of the machine bed, and the weak link is determined to be the internal rib plate, and then the structural optimization design module of ANSYS Workbench is used. Through the analysis of the size and position of the rib plate in the middle of the bed, the design and optimization of the bed structure is completed, the dynamic characteristics of the whole body are improved, the quality of the bed is reduced and the production cost is saved. This method can be extended to the structural optimization design of other parts of machine tools, thus providing an important method and basis for structural improvement and optimization design of machine tools.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG502.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 田紅亮;鐘先友;秦紅玲;趙春華;方子帆;朱大林;陳保家;張發(fā)軍;;依據(jù)各向異性分形幾何理論的固定結(jié)合部法向接觸力學(xué)模型[J];機(jī)械工程學(xué)報(bào);2013年21期
2 李玲;蔡安江;蔡力鋼;郭鐵能;阮曉光;;栓接結(jié)合部動(dòng)態(tài)特性辨識(shí)方法[J];機(jī)械工程學(xué)報(bào);2013年07期
3 葉佩青;王仁徹;趙彤;張輝;;機(jī)床整機(jī)動(dòng)態(tài)特性研究進(jìn)展[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年12期
4 黃建龍;趙維龍;柴少峰;舒海燕;;機(jī)床固定結(jié)合部剛度與阻尼參數(shù)的識(shí)別方法[J];機(jī)械制造;2012年04期
5 汪淑珍;賈輝;;數(shù)控機(jī)床的發(fā)展?fàn)顩r與應(yīng)對(duì)政策[J];重慶文理學(xué)院學(xué)報(bào)(自然科學(xué)版);2012年01期
6 楊勇;張為民;李鵬忠;;基于動(dòng)態(tài)靈敏度分析的數(shù)控機(jī)床床身結(jié)構(gòu)優(yōu)化設(shè)計(jì)[J];機(jī)械設(shè)計(jì);2011年09期
7 姜衡;管貽生;邱志成;張憲民;陳忠;許冠;;基于響應(yīng)面法的立式加工中心動(dòng)靜態(tài)多目標(biāo)優(yōu)化[J];機(jī)械工程學(xué)報(bào);2011年11期
8 毛寬民;李斌;謝波;魏要強(qiáng);;滾動(dòng)直線導(dǎo)軌副可動(dòng)結(jié)合部動(dòng)力學(xué)建模[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年08期
9 寧連旺;;ANSYS有限元分析理論與發(fā)展[J];山西科技;2008年04期
10 李明;楊慶東;;五軸聯(lián)動(dòng)數(shù)控銑床的高速動(dòng)態(tài)特性分析[J];北京機(jī)械工業(yè)學(xué)院學(xué)報(bào);2007年04期
相關(guān)博士學(xué)位論文 前2條
1 方兵;精密數(shù)控機(jī)床及其典型結(jié)合面理論建模與實(shí)驗(yàn)研究[D];吉林大學(xué);2012年
2 田紅亮;機(jī)械結(jié)構(gòu)固定結(jié)合部虛擬材料的動(dòng)力學(xué)建模[D];華中科技大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 劉洪璋;機(jī)床結(jié)構(gòu)的有限元分析及優(yōu)化[D];河北工業(yè)大學(xué);2015年
2 張倩;直線電機(jī)驅(qū)動(dòng)的數(shù)控機(jī)床誤差分析與優(yōu)化設(shè)計(jì)研究[D];北京交通大學(xué);2014年
3 張強(qiáng);數(shù)控銑鏜床床身靜動(dòng)態(tài)特性分析及其優(yōu)化研究[D];昆明理工大學(xué);2012年
4 李鎖斌;SL-32數(shù)控車床床身設(shè)計(jì)性能分析與結(jié)構(gòu)優(yōu)化[D];昆明理工大學(xué);2011年
5 徐強(qiáng);機(jī)床雙螺栓固定結(jié)合面單元?jiǎng)恿W(xué)參數(shù)識(shí)別[D];華中科技大學(xué);2009年
6 王松濤;典型機(jī)械結(jié)合面動(dòng)態(tài)特性及其應(yīng)用研究[D];昆明理工大學(xué);2008年
7 郭顯平;機(jī)床固定結(jié)合部動(dòng)力學(xué)建模及影響因素研究[D];華中科技大學(xué);2008年
8 杜圣雨;直線滾動(dòng)導(dǎo)軌結(jié)合部動(dòng)力學(xué)模型參數(shù)識(shí)別研究[D];華中科技大學(xué);2007年
9 朱守寨;數(shù)控萬能工具銑床XK8140主軸系統(tǒng)結(jié)合部等效動(dòng)力學(xué)參數(shù)識(shí)別方法研究[D];昆明理工大學(xué);2006年
10 韓會(huì)斌;機(jī)床結(jié)合面阻尼系數(shù)識(shí)別研究[D];北京工業(yè)大學(xué);2001年
,本文編號(hào):1798915
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1798915.html