不銹鋼薄板光纖激光切割工藝研究
本文選題:不銹鋼薄板 切入點(diǎn):光纖激光切割 出處:《濟(jì)南大學(xué)》2017年碩士論文
【摘要】:光纖激光切割有其獨(dú)特的優(yōu)勢(shì):切割質(zhì)量好、切割效率高、切割速度快、非接觸式切割、范圍廣、清潔安全無(wú)污染,在市場(chǎng)中短短幾年內(nèi)得到廣泛認(rèn)可。國(guó)內(nèi)小品牌層層疊出,國(guó)內(nèi)目前激光切割技術(shù)缺乏創(chuàng)新,由于工藝參數(shù)復(fù)雜,在大多數(shù)工廠中技術(shù)人員都是依據(jù)經(jīng)驗(yàn)調(diào)整參數(shù),工作效率低下,而且眾多企業(yè)沒(méi)有行業(yè)標(biāo)準(zhǔn),產(chǎn)品質(zhì)量得不到嚴(yán)格的把控,良莠不齊。本文在研究國(guó)內(nèi)外激光切割工藝現(xiàn)狀的基礎(chǔ)上,建立了ANSYS有限元模型,對(duì)激光切割不銹鋼薄板時(shí)溫度場(chǎng)分布、應(yīng)力場(chǎng)分布及它們的變化規(guī)律做了仿真研究。并且做了現(xiàn)場(chǎng)切割實(shí)驗(yàn),通過(guò)測(cè)得的切割指標(biāo)數(shù)據(jù)與仿真分析做了對(duì)照,驗(yàn)證了仿真分析的可靠性,總結(jié)了切割規(guī)律,得到切割不銹鋼薄板的最優(yōu)參數(shù)。具體內(nèi)容如下:首先,根據(jù)能量傳遞建立激光切割數(shù)學(xué)模型,通過(guò)ANSYS仿真軟件建立了激光切割不銹鋼過(guò)程的有限元模型,利用APDL編程語(yǔ)言得到溫度場(chǎng)分布及變化規(guī)律。通過(guò)間接法求出應(yīng)力場(chǎng)分布及變化規(guī)律并添加了生死單元技術(shù),實(shí)現(xiàn)了隨著切割頭移動(dòng)金屬融化并被吹除的過(guò)程仿真。發(fā)現(xiàn)在切割頭前進(jìn)方向溫度和應(yīng)力都存在集中現(xiàn)象,激光傳遞在板材內(nèi)部呈斗形照射,且光纖激光切割存在光束集中現(xiàn)象。其次,在有限元模型溫度場(chǎng)分析的基礎(chǔ)上,通過(guò)APDL編程語(yǔ)言改變參數(shù),分別分析了切割速度、切割功率及板厚變化下對(duì)溫度場(chǎng)的影響規(guī)律,并結(jié)合機(jī)理分析了其對(duì)切割指標(biāo)的影響。研究得出切割速度過(guò)快、功率過(guò)小、板材過(guò)厚時(shí)都會(huì)使材料接收的溫度達(dá)不到其熔點(diǎn),底層不能得到完全融化從而導(dǎo)致工件切不透,另外速度過(guò)慢時(shí),切縫內(nèi)壁不斷得到照射,使得熔融的金屬在來(lái)不及被輔助氣體吹走的情況下,會(huì)導(dǎo)致掛渣形成,功率過(guò)大會(huì)使切割區(qū)溫度急劇增高,融化半徑變大導(dǎo)致切縫變寬及融滴形成,板材過(guò)薄時(shí)切縫變寬,切縫不規(guī)則。最后,利用光纖激光切割機(jī)對(duì)1mm、2mm、3mm厚度的304不銹鋼進(jìn)行切割,測(cè)量掛渣量高度、粗糙度,并利用超景深顯微鏡測(cè)量條紋間距和切縫寬度。實(shí)驗(yàn)結(jié)果驗(yàn)證了仿真分析的可靠性。并通過(guò)響應(yīng)曲面法得到焦點(diǎn)和功率是影響掛渣量的主要因素;功率和板厚是影響切縫寬度的主要因素;功率和焦點(diǎn)是影響粗糙度的主要因素;氣壓和功率是影響條紋間距的主要因素。在仿真和實(shí)驗(yàn)研究的基礎(chǔ)上,最終得到切割板材的最優(yōu)參數(shù)。同時(shí)利用最優(yōu)參數(shù)作為仿真分析的工藝參數(shù)代入進(jìn)行分析,結(jié)果表明仿真分析模型具有一定的可靠性。
[Abstract]:Fiber laser cutting has its unique advantages: good cutting quality, high cutting efficiency, fast cutting speed, non-contact cutting, wide range, clean, safe and pollution-free, has been widely recognized in the market within a few years.Domestic small brands stacked up, domestic laser cutting technology is currently lack of innovation, because of the complex process parameters, in most factories technical personnel are based on experience to adjust parameters, low efficiency, and many enterprises do not have industry standards,The quality of products can not be strictly controlled, the good and bad are mixed.Based on the research of laser cutting technology at home and abroad, the ANSYS finite element model is established, and the temperature field distribution, stress field distribution and their variation law are simulated.The field cutting experiment was done and the cutting index data was compared with the simulation analysis. The reliability of the simulation analysis was verified and the cutting rule was summarized. The optimal parameters of cutting stainless steel sheet were obtained.The main contents are as follows: firstly, the mathematical model of laser cutting is established according to the energy transfer, the finite element model of laser cutting stainless steel is established by ANSYS simulation software, and the distribution and variation of temperature field are obtained by using APDL programming language.The distribution and variation of the stress field are obtained by indirect method, and the birth and death element technique is added to simulate the process of melting and blowing the metal along with the movement of the cutting head.It is found that the temperature and stress in the forward direction of the cutting head are concentrated, the laser transmission is in the shape of a bucket inside the plate, and the optical fiber laser cutting has the phenomenon of beam concentration.Secondly, on the basis of temperature field analysis of finite element model, the influence of cutting speed, cutting power and plate thickness on temperature field is analyzed by changing parameters by APDL programming language.Combined with the mechanism, the influence of the cutting index was analyzed.The results show that when the cutting speed is too fast, the power is too small and the plate is too thick, the receiving temperature of the material will not reach its melting point, the bottom layer can not be completely melted, and the workpiece cannot be cut through. In addition, if the cutting speed is too slow, the inner wall of the cutting seam will be irradiated continuously.If the molten metal cannot be blown away by the auxiliary gas, it will lead to the formation of slags. If the power is too high, the temperature of the cutting area will increase sharply, and the melting radius will become larger, resulting in the widening of the slit and the formation of the melt droplets, and when the sheet is too thin, the slit will become wider.The slit is irregular.Finally, 304 stainless steel with a thickness of 1mm ~ 2mm ~ 3mm was cut by optical fiber laser cutting machine, and the slagging height and roughness were measured, and the fringe spacing and slit width were measured by using the hyper-depth of field microscope.The experimental results verify the reliability of the simulation analysis.Through the response surface method, it is found that the focus and power are the main factors affecting the slagging amount, the power and the plate thickness are the main factors affecting the width of the slit, the power and the focus are the main factors affecting the roughness.Pressure and power are the main factors affecting the stripe spacing.On the basis of simulation and experimental research, the optimal parameters of cutting plate are obtained.At the same time, the optimal parameters are used as the process parameters for simulation analysis. The results show that the simulation analysis model has certain reliability.
【學(xué)位授予單位】:濟(jì)南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG485
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳迪;王續(xù)躍;;基于氣熔比的氧化鋯陶瓷薄板激光切割質(zhì)量研究[J];中國(guó)機(jī)械工程;2017年05期
2 任乃飛;張文;王后孝;夏凱波;張麗;王琪琪;;基于正交實(shí)驗(yàn)的20Cr13板材脈沖激光打孔工藝優(yōu)化[J];激光與光電子學(xué)進(jìn)展;2016年03期
3 彭玉海;趙晉平;侯紅玲;張暉;;工藝參數(shù)對(duì)2A12鋁合金激光切割質(zhì)量的影響及分析[J];應(yīng)用激光;2016年01期
4 張華;;激光切割加工不銹鋼研究[J];科技創(chuàng)新與應(yīng)用;2015年31期
5 呂豫文;馮愛(ài)新;莊緒華;羅敬文;謝永;周儉;許炎;曹宇;瞿建武;;22SiMn2TiB裝甲鋼激光切割試驗(yàn)研究[J];應(yīng)用激光;2015年01期
6 陳樂(lè);胡俊;;氧助激光切割中條紋形狀形成規(guī)律的仿真與實(shí)驗(yàn)[J];應(yīng)用激光;2014年06期
7 彭凱;彭玉海;侯紅玲;;激光加工技術(shù)的發(fā)展現(xiàn)狀及展望[J];山東工業(yè)技術(shù);2014年20期
8 齊忠軍;李曉明;王濤;;激光切割工藝在機(jī)械加工中的應(yīng)用[J];農(nóng)業(yè)科技與裝備;2014年05期
9 袁偉;李占國(guó);蔡云光;;基于ANSYS的激光切割溫度場(chǎng)仿真[J];長(zhǎng)春大學(xué)學(xué)報(bào);2013年12期
10 楊麗;;激光切割輔助復(fù)合噴嘴氣體流場(chǎng)的數(shù)值模擬研究[J];蚌埠學(xué)院學(xué)報(bào);2013年03期
相關(guān)會(huì)議論文 前1條
1 陳聰;高明;王磊;張臣;李耿;胡明;顧云澤;曾曉雁;;AA6061鋁合金薄板光纖激光切割工藝研究[A];中國(guó)機(jī)械工程學(xué)會(huì)焊接學(xué)會(huì)第十八次全國(guó)焊接學(xué)術(shù)會(huì)議論文集——S06切割[C];2013年
相關(guān)博士學(xué)位論文 前1條
1 鄭祺峰;發(fā)動(dòng)機(jī)連桿裂解槽激光加工技術(shù)及自動(dòng)化設(shè)備研究[D];吉林大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 逄志偉;低壓射流輔助激光打孔實(shí)驗(yàn)研究與數(shù)值模擬[D];江南大學(xué);2014年
2 陳濤;激光切割工件質(zhì)量控制及參數(shù)優(yōu)化研究[D];沈陽(yáng)工業(yè)大學(xué);2014年
3 司俊杰;激光切割條紋形成機(jī)理[D];燕山大學(xué);2014年
4 張雪娟;固體激光精密切割機(jī)加工工藝的仿真[D];西華大學(xué);2014年
5 袁偉;YAG激光切割薄鋼板的技術(shù)研究[D];長(zhǎng)春理工大學(xué);2014年
6 陳樂(lè);中厚板氧助激光切割數(shù)值仿真與實(shí)驗(yàn)研究[D];上海交通大學(xué);2014年
7 李日步;低碳鋼厚板CO_2激光切割工藝研究[D];華中科技大學(xué);2013年
8 吳問(wèn)才;激光切割板材轉(zhuǎn)角軌跡熱應(yīng)力建模與分析[D];上海交通大學(xué);2013年
9 張慧剛;電火花與激光加工表面質(zhì)量比較分析及評(píng)定研究[D];哈爾濱工程大學(xué);2012年
10 楊俊華;0Cr18Ni9不銹鋼激光打孔工藝及數(shù)值模擬研究[D];南昌航空大學(xué);2011年
,本文編號(hào):1720287
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1720287.html