旋壓成形旋輪工作狀態(tài)數(shù)值模擬及實驗研究
本文選題:旋壓成形 切入點:旋輪 出處:《山東科技大學(xué)》2017年碩士論文
【摘要】:旋壓是一種先進的塑性加工成形技術(shù),廣泛應(yīng)用于航空航天、軍工生產(chǎn)、機械工程以及日用品生產(chǎn)等行業(yè)中,具有變形力小、節(jié)約原材料、制品強度高等優(yōu)點。近年來,國內(nèi)許多學(xué)者對旋壓技術(shù)進行了研究,主要集中于工藝方法對旋壓制品質(zhì)量的影響,而對旋輪工作狀態(tài)的研究較少。因此,本文基于彈塑性力學(xué)理論,采用有限元方法研究了旋輪在旋壓過程中的力學(xué)行為和磨損機理,并對鋁合金錐形件旋壓進行了實驗研究。采用有限元分析軟件DEFORM-3D,對鋁合金錐形件的變薄旋壓工藝進行了有限元模擬。利用二步法,先建立了錐形件旋壓過程有限元模型,對旋壓過程進行了模擬,得到了旋輪的受力數(shù)據(jù);然后建立了旋輪受力模型,將第一步所得的受力數(shù)據(jù)施加于旋輪上,分析旋壓過程中旋輪的受力狀態(tài)。并對比了不同減薄率和旋輪進給速率下旋輪的應(yīng)力和變形量的變化規(guī)律;結(jié)果表明,減薄率對旋輪最大應(yīng)力和最大變形量的影響較為顯著且呈正相關(guān)性;旋輪進給速率與旋輪最大應(yīng)力和最大變形量之間并非正相關(guān)關(guān)系。建立了旋輪的磨損模型,對旋輪在旋壓過程中的磨損情況進行了模擬。分析了旋輪工作面上磨損帶的演化過程。對比了旋輪在不同初始硬度、摩擦系數(shù)以及旋輪進給速率下的最大磨損量,分析了旋輪在不同工況下的磨損形式的變化規(guī)律;結(jié)果表明提高旋輪的初始硬度、降低摩擦系數(shù)可以顯著減小磨損量,在一定范圍內(nèi)適當(dāng)調(diào)整旋輪進給速率也可以有效降低旋輪的最大磨損量。采用數(shù)控旋壓實驗平臺成功旋壓出了鋁合金錐形件,通過對比旋壓實驗過程中采集的旋輪載荷數(shù)據(jù)與數(shù)值模擬結(jié)果發(fā)現(xiàn),實驗結(jié)果與數(shù)值仿真結(jié)果變化趨勢一致,驗證了本文建立的旋壓過程有限元模型的有效性。
[Abstract]:Spinning is an advanced plastic forming technology, which is widely used in aerospace, military production, mechanical engineering and commodity production, with the advantages of small deformation, saving raw materials, high strength of products and so on.In recent years, many domestic scholars have studied spinning technology, mainly focusing on the effect of process methods on the quality of spinning products, but less on the working state of spinning wheel.Therefore, based on the theory of elastic-plastic mechanics, the mechanical behavior and wear mechanism of rotating wheel during spinning are studied by finite element method, and the spinning of aluminum alloy conical parts is studied experimentally.The thin spinning process of aluminum alloy tapered parts was simulated by finite element analysis software DEFORM-3D.By using the two-step method, the finite element model of the spinning process of the conical part is established, and the stress data of the spinning wheel are obtained by simulating the spinning process, and then the force model of the rotary wheel is established, and the force data obtained from the first step are applied to the rotary wheel.The stress state of the wheel during spinning is analyzed.The effect of thinning rate on the maximum stress and maximum deformation of rotary wheel is significant and positive correlation is obtained by comparing the variation of stress and deformation under different thinning rate and feed rate of the rotary wheel, and the results show that the effect of thinning rate on the maximum stress and the maximum deformation of rotary wheel is significant.There is no positive correlation between the feed rate and the maximum stress and deformation of the rotary wheel.The wear model of rotary wheel was established, and the wear of rotary wheel during spinning was simulated.The evolution process of wear zone on rotary wheel face is analyzed.In this paper, the maximum wear amount of the rotary wheel under different initial hardness, friction coefficient and feed rate is compared, and the wear patterns of the rotary wheel under different working conditions are analyzed, the results show that the initial hardness of the rotary wheel is improved.Reducing the friction coefficient can significantly reduce the wear rate of the rotary wheel, and adjust the feed rate of the rotary wheel in a certain range can also effectively reduce the maximum wear rate of the rotary wheel.Aluminum alloy conical parts were successfully spun by numerical control spinning experiment platform. By comparing the data of wheel load collected during spinning experiment with the numerical simulation results, it was found that the experimental results were consistent with the numerical simulation results.The validity of the finite element model of spinning process established in this paper is verified.
【學(xué)位授予單位】:山東科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG306
【參考文獻】
相關(guān)期刊論文 前10條
1 吳磊;劉彬;;旋壓技術(shù)的研究現(xiàn)狀[J];裝備制造技術(shù);2016年09期
2 黃勇;狄歐;李亞非;;基于Deform-3D的鋁合金2A12車削加工有限元模擬[J];機械制造;2016年06期
3 于輝;劉帥帥;王秀琳;黃洪濤;杜鳳山;;小口徑薄壁筒形件變薄旋壓工藝及實驗[J];塑性工程學(xué)報;2015年04期
4 潘國軍;李勇;王進;陸國棟;;普通旋壓工藝及旋輪軌跡研究現(xiàn)狀與發(fā)展[J];浙江大學(xué)學(xué)報(工學(xué)版);2015年04期
5 鄭偉剛;尹存宏;楊寧;潘振敏;沈明明;;基于Archard的正擠壓模具磨損模擬分析與研究[J];鍛壓技術(shù);2013年05期
6 張濤;李孟光;;碟形封頭旋壓成形的數(shù)值模擬及工藝分析[J];鍛壓技術(shù);2012年05期
7 宋鴻武;李昌海;常海平;王渭新;翁濤;張士宏;;高強韌鋁合金輪轂的輕量化鑄旋新工藝[J];稀有金屬;2012年04期
8 趙升噸;趙承偉;王君峰;林文捷;;現(xiàn)代旋壓設(shè)備發(fā)展趨勢的探討[J];中國機械工程;2012年10期
9 韓冬;楊合;詹梅;牟少正;楊延濤;;工藝參數(shù)對Ti75合金筒形件旋壓成形的影響[J];宇航材料工藝;2011年04期
10 程然;胡建華;黃尚宇;朱彥生;;基于有限元分析的精沖凸模壽命估算[J];塑性工程學(xué)報;2010年03期
相關(guān)博士學(xué)位論文 前1條
1 王曉琴;鈦合金Ti6Al4V高效切削刀具摩擦磨損特性及刀具壽命研究[D];山東大學(xué);2009年
相關(guān)碩士學(xué)位論文 前5條
1 何陽;鈦合金筒形件強力旋壓成形研究[D];長安大學(xué);2015年
2 郝繼東;變薄旋壓工藝數(shù)值模擬及實驗分析[D];山東科技大學(xué);2011年
3 蔣鈺鋼;高速切削加工過程有限元仿真研究[D];山東大學(xué);2011年
4 侯磊;帶輪旋壓成形新工藝的有限元模擬研究[D];合肥工業(yè)大學(xué);2010年
5 李超玲;筒形件強力旋壓過程的有限元數(shù)值模擬[D];西北工業(yè)大學(xué);2004年
,本文編號:1705593
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1705593.html