超聲—壓力耦合的裝置設(shè)計及其對Al-Cu合金微觀組織的影響
本文選題:擠壓壓力 切入點:超聲振動 出處:《華南理工大學》2016年博士論文
【摘要】:隨著我國航空、航天、交通運輸以及國防工業(yè)的發(fā)展,對高性能鋁合金產(chǎn)品的需求越來越大,而采用先進的成形工藝是制備高性能鋁合金的關(guān)鍵。目前,在鋁合金鑄造過程中常采用施加物理外場的方法來改善其凝固組織,即通過物理外場所產(chǎn)生的一系列機械、物理、化學效應來影響合金的形核和生長,達到破碎枝晶、細化晶粒等目的,最終有助于提升鑄錠的性能和質(zhì)量。目前在凝固過程中施加壓力或者超聲振動已在金屬材料加工領(lǐng)域得到廣泛的應用。為了克服單一物理外場的工藝缺陷以及進一步提升鋁合金的性能,本論文提出一種在擠壓鑄造鋁合金過程中同時耦合高能超聲的新技術(shù),設(shè)計并制造了一個獨特的試驗平臺,能夠?qū)崿F(xiàn)超聲振動與擠壓壓力的耦合,在此基礎(chǔ)上對超聲振動系統(tǒng)各組元以及擠壓模具的關(guān)鍵參數(shù)進行設(shè)計和優(yōu)化。隨后以Al-5.0Cu合金為研究對象,對超聲-壓力耦合作用下的凝固組織進行數(shù)值模擬,并結(jié)合不同參數(shù)下的實驗結(jié)果深入研究了耦合作用對合金凝固過程和微觀組織、力學性能的影響規(guī)律,最后對超聲-壓力耦合場的作用機制進行探討。論文得到的主要結(jié)論如下:(1)研制了一套超聲-壓力耦合鑄造試驗裝置?紤]到超聲-壓力耦合鑄造中超聲振動系統(tǒng)所受溫度、壓力載荷不斷變化,首先對超聲波換能器、發(fā)生器分別進行阻抗匹配設(shè)計與諧振匹配設(shè)計,保證了換能器的工作效率和發(fā)生器的能量傳輸效率;然后基于理論尺寸設(shè)計的基礎(chǔ)上,分別進行了普通條件和高溫、高壓下的不同形狀(階梯形、圓錐形以及指數(shù)形)變幅桿的模態(tài)分析和諧響應分析,發(fā)現(xiàn)階梯形和指數(shù)形變幅桿具有較大的振幅放大比,但階梯形變幅桿的尺寸突變會造成應力集中以及能量傳輸?shù)膿p耗;為了得到更大的輸出端諧振振幅,設(shè)計了一套具有不同過渡形狀的多級復雜變幅桿,并進行了不同工況下的模態(tài)和諧響應分析,發(fā)現(xiàn)高溫、高壓下指數(shù)形過渡型變幅桿的振幅放大比最大,為144,同時高溫、高壓下的諧振頻率為19.943 kHz,與理想諧振頻率20 kHz最接近,最終選用指數(shù)形過渡段的復雜變幅桿為本文中的超聲振動系統(tǒng)所用;為避免超聲能量的損耗以及保證楔形密封效果,對擠壓模具進行了關(guān)鍵參數(shù)的正交優(yōu)化設(shè)計,當模具壁厚為25 mm,錐孔斜度為30°,孔內(nèi)直線段長度為8 mm時,側(cè)孔周圍的平均變形量最小,可以充分避免變幅桿的振動能量的損失和楔形密封的失效。(2)對超聲-壓力耦合作用下Al-5.0Cu合金的凝固組織進行了數(shù)值模擬。首先基于ProCAST反計算模塊建立了鑄件-模具界面換熱系數(shù)的反分析求解模型,對大量數(shù)據(jù)擬合得到不同工藝下的鑄件-模具界面換熱系數(shù)曲線;在此基礎(chǔ)上,在CAFE宏-微觀耦合計算模型中同時定義擠壓力和超聲聲強,采用反分析法求解出的界面換熱系數(shù)曲線對Al-5.0Cu合金凝固組織的進行模擬預測,通過定量分析柱狀晶和等軸晶的比例、平均晶粒尺寸等結(jié)果,發(fā)現(xiàn)反分析界面換熱系數(shù)曲線下模擬出的微觀組織與實驗結(jié)果的吻合度高于采用恒定界面換熱系數(shù)下的模擬結(jié)果。本文繼續(xù)通過數(shù)值模擬和實驗結(jié)果對比的方法,優(yōu)化了計算模型各參數(shù)的取值范圍,最后通過對比不同超聲-壓力耦合參數(shù)下凝固組織的模擬結(jié)果和實驗結(jié)果,進一步說明了耦合作用可顯著降低平均晶粒尺寸,改善柱狀晶的比例。(3)分別研究了擠壓壓力、超聲振動以及超聲-壓力耦合工藝對Al-5.0Cu合金凝固過程和微觀組織的影響規(guī)律。結(jié)果表明:擠壓壓力為75 MPa時熔體內(nèi)部的冷卻速度最大,擠壓力基本消除了孔洞等鑄造缺陷,同時還可以減小二次枝晶間距,但通過擠壓鑄造很難得到理想的細小均勻等軸晶組織;功率為1 kW的超聲振動可以在變幅桿端面附近區(qū)域內(nèi)形成一定程度上得到細化的微觀組織,但隨著超聲能量的衰減,微觀組織細化程度不均勻,遠離變幅桿端面的試樣微觀組織細化程度較弱;超聲-壓力耦合作用(75MPa+1 kW)可以進一步減小晶粒尺寸,增加等軸晶組織的比例,并且各取樣位置的細化程度較均勻,耦合作用還可以改善θ相形貌,并提高ɑ(Al)基體中的Cu元素含量,起到固溶強化的作用。(4)分析了超聲-壓力耦合場在Al-Cu合金凝固過程的作用機制。首先分別分析了單一擠壓鑄造工藝和超聲振動工藝對Al-Cu合金凝固過程的影響。接下來基于空化模型,通過開發(fā)二次子程序UDF以及添加源項的方式分別在空化模型中導入擠壓力和超聲聲流,分別模擬得到了單一超聲和超聲-壓力耦合作用下Al-5.0Cu合金熔體內(nèi)部的空化氣泡體積分數(shù)、空化區(qū)域大小和強度以及熔體內(nèi)部壓力、流體速度等,發(fā)現(xiàn)耦合場會使得空化效應的強度和區(qū)域增大,還可以改變?nèi)垠w內(nèi)部壓力分布和壓力梯度差,從而導致熔體內(nèi)部形成更強烈的對流,即超聲-壓力的耦合作用可以增強熔體內(nèi)部的空化效應和聲流效應,這會導致熔體內(nèi)部出現(xiàn)更大過冷度,降低形核功,增加相變驅(qū)動力,促進更多的晶核產(chǎn)生和晶核游離,最終形成細小均勻的凝固組織。最后通過對不同工藝下的熔體內(nèi)部溫度分布以及宏、微觀組織的定量分析驗證了數(shù)值模擬的預測。
[Abstract]:With China's aviation, aerospace, transportation and development of the defense industry, the demand for high performance Aluminum Alloy products and the forming of advanced technology is the key to the preparation of high performance Aluminum Alloy. At present, in the Aluminum Alloy casting method applied physics field is often used to improve the solidification structure. A series of mechanical field generated by physical, physical and chemical effects to influence the nucleation and growth of alloy, crushing the dendrite, grain refinement to eventually help to improve the performance and quality of ingot in solidification process. The pressure or ultrasonic vibration has been widely used in metal materials in order to process processing field. To overcome the defect of single physical field and further enhance the performance Aluminum Alloy, this paper proposes a Aluminum Alloy in squeeze casting process and new technology of high intensity ultrasonic coupling, The design and manufacture of a unique experiment platform, can realize the coupling of ultrasonic vibration and extrusion pressure, based on the key parameters of the ultrasonic vibration system components and extrusion die design and optimization. Then using Al-5.0Cu alloy as the research object, numerical simulation on solidification structure of ultrasonic coupling under pressure and combined with the different parameters of the experimental results of in-depth study of the coupling effect on solidification process and microstructure, influence of mechanical properties, discussed the mechanism of ultrasonic pressure at the coupling field. The main conclusions are as follows: (1) developed a set of ultrasonic pressure coupling casting experimental device is considered. The ultrasonic vibration system of ultrasonic pressure coupling in the casting temperature, pressure load changing, the ultrasonic transducer, the generator impedance matching design and resonance The matching design, to ensure the efficiency of energy transfer efficiency of the transducer and generator; and then the size of foundation design based on the theory, are common and high temperature conditions, different shapes under high pressure (stepped, and conical horn shape index) modal analysis and harmonic response analysis, it is found that the amplitude stepped and deformation index horn with large magnification ratio, but the mutation of steppedultrasonichorn size will cause stress concentration and energy transmission loss; in order to get the output resonant larger amplitude, designed a set of different transition shape of multi-stage complex horn, and the modal and harmonic response analysis under different conditions, the discovery of high amplitude, high pressure index shape transition horn amplification ratio is 144, while the maximum temperature, the resonant frequency under high pressure is 19.943 kHz, the most close to the ideal resonant frequency of 20 kHz, the most The final selection of complex exponential transition horn is used for ultrasonic vibration system in this paper; in order to avoid the loss of ultrasonic energy and ensure the wedge-shaped sealing effect, optimum design of extrusion die for the key parameters, when the mold wall thickness is 25 mm, cone angle for 30 degrees, straight line length in the hole 8 mm, the average amount of deformation around the side hole of the minimum, can fully avoid the loss of failure and wedge vibration energy of the horn seal. (2) on the solidification structure of Al-5.0Cu alloy under the coupling effect of ultrasonic pressure are simulated. Based on the analysis model of anti ProCAST anti - mold casting calculation module is established the interfacial heat transfer coefficient, the large amount of data obtained under different technological conditions of the casting mold interfacial heat transfer coefficient curve; on this basis, the CAFE macro microcosmic coupling calculation and extrusion pressure and ultra sound definition model Strong, is solved by the inverse analysis method of interfacial heat transfer coefficient curves were simulated on solidification of Al-5.0Cu alloy, through quantitative analysis of columnar and equiaxed ratio, average grain size results agree with the experimental results found that the microstructure analysis of interfacial heat transfer coefficient curve under the simulation of the degree is higher than that of the constant interface for simulation results under thermal coefficient. In this paper, through the method of comparison to numerical simulation and experimental results, the optimal range of calculation of the parameters in the model, the simulation results and experimental results by comparing the different ultrasonic pressure coupling parameters of coagulation of tissue, further explains that the coupling effect can significantly reduce the average grain size and improve the columnar crystal ratio. (3) the extrusion pressure of ultrasonic vibration and ultrasonic pressure coupling process on Al-5.0Cu alloy solidification process and microstructure. Sound rules. The results show that the cooling rate of the melt extrusion maximum internal pressure is 75 MPa, pressure casting defects such as voids basically eliminated, but also can reduce the two primary dendrite spacing, but by squeeze casting is difficult to get the desired uniform fine equiaxed grains; the power ultrasonic vibration of 1 kW can be formed the microstructure of a certain extent can be refined in the area near the horn tip, but with the attenuation of ultrasonic energy, microstructure inhomogeneity, away from the horn end of the sample microstructure is weaker; ultrasonic pressure coupling (75MPa+1 kW) can further reduce the increase of grain size, and equiaxed grains. The proportion and degree of refinement of each sampling location is uniform, the coupling effect can also improve the morphology and improve the theta, alpha (Al) Cu content in the matrix, the solid solution strengthening function (4) is analyzed. Ultrasonic pressure coupling field in the mechanism of the solidification of the Al-Cu alloy. Firstly analyses the single effect of extrusion casting technology and technology of ultrasonic vibration on the solidification of the Al-Cu alloy. Then based on cavitation model, through the development of two UDF and add subroutine source terms into the pressure and the flow in the ultrasonic cavitation model respectively. Simulated single ultrasound and ultrasound - pressure coupling internal Al-5.0Cu alloy melt cavitation bubble volume fraction, cavitation region size and strength and melt the internal pressure, fluid velocity, it is found that the coupling field makes the cavitation intensity and the area increases, but also can change the internal melt pressure distribution and pressure gradient, resulting in inside the melt convection formed more strongly, the coupling effect of ultrasonic cavitation effect and acoustic pressure can enhance the melt flow inside this effect. Will lead to more internal melt undercooling, reduce nucleation work, increase the transformation driving force, promote the nucleation and crystal nucleus generated more free, and ultimately the formation of fine and uniform structure. By the end of the different process of internal temperature distribution of melt and macro, quantitative analysis of the microstructure of the verified numerical simulation forecast.
【學位授予單位】:華南理工大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:TG146.21
【相似文獻】
相關(guān)期刊論文 前10條
1 杜濟美;;超聲擠壓[J];新技術(shù)新工藝;1982年05期
2 賀慶華;;微孔超聲沖擠[J];電加工;1987年04期
3 韋良強;于杰;秦舒浩;何敏;;聚合物熔體超聲擠出技術(shù)研究綜述[J];塑料;2012年05期
4 王菊香,趙恂,潘進,尹新方;超聲電解法制備超細金屬粉的研究[J];材料科學與工程;2000年04期
5 彭蕾;陳剛;趙玉濤;王軍;黃康;;高能超聲對Mg_2Si/AZ91D復合材料的影響[J];材料科學與工藝;2012年01期
6 王菊香,潘進,趙恂,尹新方;超聲電解法制備超細金屬粉的研究[J];金屬功能材料;1997年03期
7 梁春虹;黃惠華;;超聲波場致效應對酶的影響[J];食品與機械;2007年02期
8 靳慧霞;董濱;孫穎;雷兆武;;超聲協(xié)同紫外滅活大腸桿菌實驗研究[J];環(huán)境科學與技術(shù);2010年11期
9 黃慧丹;史益強;崔志芹;;超聲在結(jié)晶中的應用與進展[J];廣東化工;2013年06期
10 孫鳳梅;宋長江;翟啟杰;;超聲凝固細晶技術(shù)的研究與發(fā)展[J];現(xiàn)代鑄鐵;2008年06期
相關(guān)會議論文 前9條
1 馮中營;吳勝舉;周鳳梅;黃利波;;超聲及其聯(lián)用技術(shù)的殺菌效果[A];中國聲學學會2007年青年學術(shù)會議論文集(上)[C];2007年
2 洪豫北;;超聲止孕方法與相關(guān)參數(shù)的選取[A];2010年超聲醫(yī)學和醫(yī)學超聲論壇會議論文集[C];2010年
3 劉剛;楊日福;張偉;范曉丹;李春梅;丘泰球;;超聲耦合其他技術(shù)的研究進展[A];中國聲學學會功率超聲分會2009年學術(shù)年會論文集[C];2009年
4 鄧永智;李文權(quán);;海藻多糖的超聲水解[A];中國海洋學會海洋生物工程2005年學術(shù)年會論文集[C];2005年
5 邵健;陳洪振;繆新磊;朱永偉;;超聲調(diào)制電加工振動系統(tǒng)的優(yōu)化設(shè)計及試驗[A];第15屆全國特種加工學術(shù)會議論文集(下)[C];2013年
6 李儒荀;平雪良;孫廣能;;光、電、磁、聲在食品和發(fā)酵工業(yè)中的應用[A];中國機械工程學會包裝與食品工程分會第四屆學術(shù)年會論文集[C];1995年
7 賀慶華;;微孔超聲沖擠[A];第五屆全國電加工學術(shù)年會論文集(特種加工篇與綜合性論文篇)[C];1986年
8 郝長春;王欣敏;朱久玲;楊靜;何光曉;孫潤廣;;超聲控釋載藥脂質(zhì)體影響因素[A];2013年全國功率超聲學術(shù)會議論文集[C];2013年
9 盧群;丘泰球;劉曉艷;羅登林;盧義剛;;超聲物理效應影響細胞膜通透性的研究[A];2004年全國物理聲學會議論文集[C];2004年
相關(guān)博士學位論文 前10條
1 梁雄;聚合物微塑件超聲模壓粉末成型方法及其塑化機理[D];哈爾濱工業(yè)大學;2015年
2 潘文磊;骨骼定量超聲檢測關(guān)鍵技術(shù)及其聲學效應研究[D];哈爾濱工業(yè)大學;2016年
3 張楊;超聲—壓力耦合的裝置設(shè)計及其對Al-Cu合金微觀組織的影響[D];華南理工大學;2016年
4 范功端;水體中微囊藻的超聲控制技術(shù)研究[D];重慶大學;2012年
5 李輝;超聲、微波助萃取及分子印跡技術(shù)在中草藥活性成分分離分析中的研究與應用[D];湖南大學;2005年
6 劉彬;低頻超聲激活光敏化合物損傷蛋白質(zhì)分子的研究[D];東北大學;2011年
7 袁鶴然;鋁合金超聲—交流TIG復合焊電弧行為與接頭組織性能研究[D];哈爾濱工業(yè)大學;2014年
8 王小梅;超聲對麥冬多糖結(jié)構(gòu)、溶液行為及生物活性影響的研究[D];陜西師范大學;2013年
9 李姜;聚合物共混物熔體在超聲作用下的物理化學反應以及在注射過程中的結(jié)構(gòu)演變[D];四川大學;2005年
10 王金剛;空化效應在強化EDTA降解及在模擬放射性廢水處理中的應用研究[D];中國原子能科學研究院;2007年
相關(guān)碩士學位論文 前10條
1 溫凱林;雙超聲同步壓縮纖維素生物質(zhì)的成型機理和工藝研究[D];廣東工業(yè)大學;2016年
2 王驍;基于光聲機理的激光超聲關(guān)鍵技術(shù)研究[D];南京航空航天大學;2015年
3 許曉飛;超聲波強化蒸發(fā)傳熱性能研究[D];天津科技大學;2015年
4 張凡;雙超聲耦合強化溶液結(jié)晶成核的研究[D];華南理工大學;2016年
5 劉純;窄矩形超聲反應器停留時間分布特性研究[D];華南理工大學;2016年
6 葛洪亮;鋁合金隨焊超聲沖擊焊縫組織改變及影響機理研究[D];哈爾濱工業(yè)大學;2016年
7 張佴棟;超聲輔助酸性硫脲浸出燒結(jié)灰中銀的工藝研究[D];昆明理工大學;2016年
8 池淼炳;生物樣品中重金屬的超聲酶萃及其AFS檢測技術(shù)研究[D];安徽工業(yè)大學;2016年
9 牟宗睿;超聲預處理對玉米淀粉影響及在陽離子淀粉制備中的應用[D];山東農(nóng)業(yè)大學;2013年
10 陶張晶;改良氧化溝工藝剩余污泥的超聲破解及資源化技術(shù)研究[D];安徽建筑大學;2016年
,本文編號:1703344
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1703344.html