天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 鑄造論文 >

稀土Y及CNTs在ADC12中的應(yīng)用及性能分析

發(fā)布時(shí)間:2018-03-10 15:42

  本文選題:ADC12鋁合金 切入點(diǎn):稀土Y 出處:《南昌大學(xué)》2017年碩士論文 論文類型:學(xué)位論文


【摘要】:ADC12鋁合金屬于Al-Si-Cu系合金,具有較高的比強(qiáng)度,較小的熱膨脹系數(shù),較好的耐腐蝕性以及優(yōu)良的導(dǎo)電導(dǎo)熱性能。該合金的鑄造性能優(yōu)良,但鑄造組織中的α-Al枝晶粗大,共晶硅相呈粗大板片狀,β-Fe相呈粗大長針狀,這均會(huì)導(dǎo)致其力學(xué)性能降低,極大限制了ADC12鋁合金的應(yīng)用。本文主要研究了稀土Y及CNTs在ADC12鋁合金中的應(yīng)用及性能。研究結(jié)果表明:稀土Y可以顯著細(xì)化ADC12鋁合金中的α-Al相并改善共晶硅相的形貌。當(dāng)稀土Y的含量為0.2wt%時(shí),α-Al相得到了較佳的細(xì)化效果,合金的二次枝晶臂間距(6.9μm)最低,較未變質(zhì)合金下降了75.6%。共晶硅相轉(zhuǎn)變?yōu)榧?xì)小的纖維狀或顆粒狀而且尖角消失,平均面積降至1.7μm2,長徑比降至1.9,較未變質(zhì)合金分別降低了96.1%和89.0%,這表明共晶硅相得到了完全變質(zhì)。β-Fe相為細(xì)小的短桿狀,其長度為3.1μm,比未變質(zhì)合金分降低了85.8%。合金的極限抗拉強(qiáng)度、延伸率和硬度分別達(dá)到了255.62MPa、3.25%和94.6HV,較未變質(zhì)ADC12鋁合金分別提高了48.3%、72.9%和24.6%。然而當(dāng)稀土Y的含量進(jìn)一步提高到0.3wt%時(shí),合金的α-Al相,共晶硅相及β-Fe相均開始粗化。對(duì)于稀土Y變質(zhì)ADC12鋁合金,較適宜的固溶溫度為520°C。固溶處理后,共晶硅相得到較好的球化效果,同時(shí)β-Fe相尺寸減小且尖角變鈍,這有均利于合金的力學(xué)性能。當(dāng)固溶溫度為500°C,雖然共晶硅相得到了較好的球化效果,但短桿狀的β-Fe相的尺寸較大且尖角未消失。當(dāng)固溶溫度為540°C時(shí),合金出現(xiàn)了明顯的過燒現(xiàn)象,部分共晶硅相及富鐵相顯著粗化,另一部分共晶硅相及富鐵相呈雨點(diǎn)狀與富銅相密集的分布在合金晶界處。在ADC12鋁合金中加入稀土Y后,固溶組織中的共晶硅相尺寸得到了細(xì)化且尺寸更均勻,富鐵相也得到了較好的細(xì)化,Al2Cu相的溶解更完全。0.2wt%稀土Y變質(zhì)ADC12鋁合金在520°C下固溶8h,然后經(jīng)過淬火以及170°C下時(shí)效10h后,合金的抗拉強(qiáng)度(313.51MPa)、延伸率(3.19%)和硬度(132.7HV)較未熱處理ADC12基體分別提高了81.89%、70.59%和74.31%。高能超聲法較機(jī)械攪拌法的分散能力更強(qiáng)。高能超聲法制備CNTs/ADC12合金中,CNTs的添加能夠改善共晶硅相的形貌,由粗大的長針狀轉(zhuǎn)變?yōu)轭w粒狀。當(dāng)碳納米管含量為1.0wt%時(shí),其極限抗拉強(qiáng)度(251.91MPa)和硬度(103.34HV)均達(dá)到最大值,較ADC12基體分別提高了27.0%和29.5%。當(dāng)CNTs含量為1.5wt%時(shí),碳納米管開始團(tuán)聚。通過分析合金的拉伸斷口發(fā)現(xiàn),高能超聲法較機(jī)械攪拌法對(duì)碳納米管分散效果更好。通過TEM分析合金的界面發(fā)現(xiàn),高能超聲法能夠抑制碳納米管與鋁合金基體之間反應(yīng)生成Al4C3相,同時(shí)能夠提高碳納米管與鋁合金基體之間的潤濕性。
[Abstract]:ADC12 aluminum alloy belongs to Al-Si-Cu series alloy, which has higher specific strength, smaller coefficient of thermal expansion, better corrosion resistance and excellent conductivity and thermal conductivity. The casting property of the alloy is excellent, but the 偽 -Al dendrite in casting structure is coarse. The mechanical properties of eutectic silicon phase and 尾 -Fe phase are reduced. The application and properties of rare earth Y and CNTs in ADC12 aluminum alloy are studied in this paper. The results show that rare earth Y can refine 偽 -Al phase in ADC12 aluminum alloy and improve eutectic silicon phase. Morphology. When the content of rare earth Y is 0.2 wt%, 偽 -Al phase has a better refinement effect. The secondary dendritic arm spacing (6.9 渭 m) of the alloy is the lowest, which is 75.6% lower than that of the unmodified alloy. The eutectic silicon phase is transformed into fine fibrous or granular, and the sharp angle disappears. The average area is reduced to 1.7 渭 m ~ 2 and the aspect ratio to 1.9, which is 96.1% and 89.0 lower than that of the unmodified alloy, respectively. It shows that the eutectic silicon phase is completely modified. The 尾 -Fe phase is a small short rod with a length of 3.1 渭 m, which is 85.8% lower than that of the unmodified alloy, and the ultimate tensile strength of the alloy is 85.8% lower than that of the unmodified alloy. The elongation and hardness of the alloy reached 255.62 MPA 3.25% and 94.6 HVrespectively, which increased 48.3% and 24.6% compared with the unmodified ADC12 aluminum alloy, respectively. However, when the content of rare earth Y was further increased to 0.3 wt%, the 偽 -Al phase of the alloy was increased. The eutectic silicon phase and 尾 -Fe phase begin to coarsening. For rare earth Y modified ADC12 aluminum alloy, the suitable solution temperature is 520 擄C. after solution treatment, eutectic silicon phase has better spheroidization effect, and 尾 -Fe phase size decreases and the sharp angle becomes obtuse. When the solution temperature is 500 擄C, the eutectic silicon phase has a better spheroidizing effect, but the 尾 -Fe phase with short rod shape is larger in size and does not lose its sharp angle, when the solution temperature is 540 擄C. The alloy appears obvious overburning phenomenon, some eutectic silicon phase and iron rich phase are coarsened obviously, the other part of eutectic silicon phase and iron rich phase distribute densely at the grain boundary of the alloy in the form of raindrops and copper-rich phase. After adding rare earth Y to ADC12 aluminum alloy, The size of eutectic silicon phase in the solution structure was refined and the size was more uniform, and the iron phase was finely refined. The dissolution of Al _ 2Cu phase was more complete. 0.2 wt% rare earth Y modified ADC12 aluminum alloy was dissolved at 520 擄C for 8 h, then quenched and aged at 170 擄C for 10 h. The tensile strength of the alloy was 313.51MPa1, elongation was 3.19) and hardness 132.7HV) increased by 81.89% and 74.31% than that of the untreated ADC12 matrix, respectively. The dispersion ability of the high-energy ultrasonic method was better than that of the mechanical stirring method. The addition of the high-energy ultrasonic method to the preparation of CNTs/ADC12 alloy could be improved. Morphology of eutectic silicon phase, The maximum tensile strength (251.91MPa) and hardness (103.34HVV) were obtained when the content of carbon nanotubes was 1.0 wt%, which was 27.0% and 29.5wt% higher than that of ADC12 matrix, respectively. When the content of CNTs was 1.5 wt%, the maximum values were obtained. By analyzing the tensile fracture of the alloy, it was found that the high energy ultrasonic method was better than the mechanical stirring method in dispersing the carbon nanotubes. The TEM analysis of the interface of the alloy revealed that the high energy ultrasonic method was more effective than the mechanical stirring method in dispersing the carbon nanotubes. High energy ultrasonic method can inhibit the reaction between carbon nanotubes and aluminum alloy matrix to form Al4C3 phase and improve the wettability between carbon nanotubes and aluminum alloy matrix.
【學(xué)位授予單位】:南昌大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG146.21

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 閆洪;陳凡薈;李正華;;Microstructure and mechanical properties of AlSi10Cu3 alloy with(La+Yb) addition processed by heat treatment[J];Journal of Rare Earths;2016年09期

2 李正華;胡志;YAN Hong;;Effect of Samarium (Sm) Addition on Microstructure and Mechanical Properties of Al-5Cu Alloys[J];Journal of Wuhan University of Technology(Materials Science);2016年03期

3 李正華;閆洪;;稀土(La+Yb)對(duì)T6熱處理AlSi10Cu3合金摩擦磨損行為影響[J];材料熱處理學(xué)報(bào);2016年02期

4 熊俊杰;閆洪;揭小平;;混合稀土變質(zhì)對(duì)ADC12鋁合金組織及性能的影響[J];材料科學(xué)與工藝;2016年01期

5 葉何遠(yuǎn);閆洪;諸建彬;;粉煤灰泡沫陶瓷鋁基復(fù)合材料的制備及界面結(jié)合研究[J];功能材料;2015年21期

6 胡志;阮先明;閆洪;;稀土元素Nd對(duì)近共晶Al-12Si合金顯微組織與力學(xué)性能的影響(英文)[J];Transactions of Nonferrous Metals Society of China;2015年12期

7 李正華;閆洪;;Modification of primary α-Al, eutectic silicon and β-Al_5FeSi phases in as-cast AlSi10Cu3 alloys with(La+Yb) addition[J];Journal of Rare Earths;2015年09期

8 Hong Yan;Xian-Chen Song;Xin Huang;;Preparation of Al La master alloy by ultrasonic method and modification on Al alloy[J];Rare Metals;2015年07期

9 張從陽;李文珍;靳宇;薛衛(wèi)東;高維明;;CNTs/AZ91D納米復(fù)合材料的制備與力學(xué)性能[J];特種鑄造及有色合金;2013年10期

10 閆洪;李正華;黃昕;;鑭對(duì)ADC12鋁合金固溶時(shí)效組織的影響[J];稀土;2013年05期

相關(guān)博士學(xué)位論文 前2條

1 黃文先;超聲原位鎂基復(fù)合材料制備及流變成形研究[D];南昌大學(xué);2014年

2 李豹;AlSi7Mg合金共晶硅變質(zhì)規(guī)律及其微觀機(jī)制[D];哈爾濱工業(yè)大學(xué);2011年

相關(guān)碩士學(xué)位論文 前7條

1 李正華;混合稀土變質(zhì)鋁合金組織及性能研究[D];南昌大學(xué);2015年

2 王迪;Al-Si-Cu-Nd鑄造鋁合金的微觀組織及疲勞性能[D];沈陽工業(yè)大學(xué);2012年

3 陳小會(huì);原位合成Al-Ti金屬間化合物增強(qiáng)鋁基復(fù)合材料制備研究[D];南昌大學(xué);2011年

4 成平;消失模鑄造用改性A356鋁合金的組織性能研究[D];華中科技大學(xué);2011年

5 鞏天浩;鋁鈦硼和稀土變質(zhì)的5182鋁合金的制備、組織和性能研究[D];內(nèi)蒙古工業(yè)大學(xué);2010年

6 孫常明;利用稀土改善富鐵鋁合金組織和性能的研究[D];內(nèi)蒙古工業(yè)大學(xué);2007年

7 王正軍;Al10Ce中間合金制備及其變質(zhì)效果研究[D];蘭州理工大學(xué);2005年

,

本文編號(hào):1593987

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1593987.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶37651***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
在线免费视频你懂的观看| 国产亚洲中文日韩欧美综合网 | 欧美一区二区三区性视频 | 久久99午夜福利视频| 中文字幕人妻综合一区二区| 熟女少妇久久一区二区三区| 日韩亚洲激情在线观看| 中文字幕精品一区二区三| 国产又长又粗又爽免费视频| 亚洲国产色婷婷久久精品| 亚洲一区二区三区精选| 男女激情视频在线免费观看| 中文久久乱码一区二区| 亚洲欧美日韩精品永久| 欧洲日韩精品一区二区三区| 久久精品偷拍视频观看| 亚洲内射人妻一区二区| 日韩精品一区二区三区av在线| 久久精品国产第一区二区三区| 日本人妻中出在线观看| 美国女大兵激情豪放视频播放 | 99久久婷婷国产亚洲综合精品| 国产精品伦一区二区三区四季| 中文字幕中文字幕在线十八区| 日韩精品一区二区毛片| 日本一二三区不卡免费| 亚洲国产一区精品一区二区三区色| 国产精品国产亚洲区久久| 欧美一级特黄特色大色大片| 麻豆一区二区三区精品视频| 美日韩一区二区精品系列| 日韩午夜福利高清在线观看| 久久精品一区二区少妇| 精品女同在线一区二区| 性欧美唯美尤物另类视频| 国产不卡在线免费观看视频| 国产一区欧美一区日韩一区| 欧美韩国日本精品在线| 中文字幕日产乱码一区二区| 麻豆欧美精品国产综合久久| 中文字幕一二区在线观看|