混合勵(lì)磁磁懸浮系統(tǒng)高剛度控制策略研究
本文選題:混合勵(lì)磁磁懸浮系統(tǒng) 切入點(diǎn):移動(dòng)式數(shù)控機(jī)床 出處:《沈陽工業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著現(xiàn)代工業(yè)的不斷發(fā)展,高精度工業(yè)的生產(chǎn)設(shè)備和高精度精密儀器對零件的加工精度要求越來越高,而且傳統(tǒng)移動(dòng)式數(shù)控機(jī)床的平臺與靜止導(dǎo)軌之間的摩擦對提高機(jī)床剛度具有反作用,因此本文將混合勵(lì)磁磁懸浮技術(shù)應(yīng)用到龍門移動(dòng)式數(shù)控機(jī)床中,目的在于提高龍門移動(dòng)式數(shù)控機(jī)床的剛度。而且,控制系統(tǒng)的品質(zhì)對平臺的控制精度和懸浮效果具有決定性作用,因而混合勵(lì)磁磁懸浮平臺的控制系統(tǒng)的研究對提高機(jī)床剛度也起到關(guān)鍵作用。首先,本文詳細(xì)介紹了排斥型混合勵(lì)磁磁懸浮系統(tǒng)和吸力型混合勵(lì)磁磁懸浮系統(tǒng)的工作原理,并選擇后者作為研究對象,建立單混合勵(lì)磁磁懸浮系統(tǒng)的數(shù)學(xué)模型。其次,由于抖振現(xiàn)象,單獨(dú)運(yùn)用滑模變結(jié)構(gòu)控制不能滿足系統(tǒng)的控制要求。因此提出了混合勵(lì)磁磁懸浮系統(tǒng)的自適應(yīng)滑模控制。自適應(yīng)滑?刂浦饕譃橐韵挛宀襟E進(jìn)行。第一步,確認(rèn)滑?刂频那袚Q面。第二步,求解出滑?刂频目刂坡傻牡刃Р糠。第三步,利用自適應(yīng)控制設(shè)計(jì)一個(gè)自適應(yīng)法則來估測滑?刂频膮(shù),將此估測參數(shù)代替滑?刂坡傻那袚Q部分,得到完整的自適應(yīng)滑?刂坡。第四步,構(gòu)建Lyapunov函數(shù),證明該控制滿足可達(dá)性條件。第五步,用MATLAB仿真驗(yàn)證該控制方法的可行性。再次,為了很大程度上降低抖振現(xiàn)象的負(fù)面影響,并且提高系統(tǒng)剛度,在前文自適應(yīng)滑模控制的基礎(chǔ)上,提出了基于HJI的魯棒控制,引入表示系統(tǒng)魯棒性能的L2增益J,J越小系統(tǒng)魯棒性能越好,通過合理設(shè)計(jì)使其滿足HJI不等式,完成控制理論,利用MATLAB仿真驗(yàn)證該控制方法的可行性。最后,將自適應(yīng)滑?刂坪突贖JI的自適應(yīng)滑模魯棒控制的仿真結(jié)果作對比,驗(yàn)證后者是否比前者提高混合勵(lì)磁磁懸浮系統(tǒng)的剛度效果更好。
[Abstract]:With the development of modern industry, the production equipment of high-precision industry and high-precision precision instruments require higher and higher machining precision of parts. Moreover, the friction between the platform of the traditional mobile CNC machine tool and the static guide rail is counterproductive to improve the rigidity of the machine tool, so this paper applies the hybrid excitation magnetic levitation technology to the gantry mobile CNC machine tool. The purpose is to improve the rigidity of the gantry mobile CNC machine tool. Moreover, the quality of the control system plays a decisive role in the control accuracy and suspension effect of the platform. Therefore, the study of the control system of the hybrid excitation maglev platform also plays a key role in improving the rigidity of the machine tool. Firstly, the working principle of the repulsive hybrid excitation magnetic levitation system and the suction hybrid excitation magnetic levitation system is introduced in detail. The latter is chosen as the research object to establish the mathematical model of single-hybrid excitation maglev system. Secondly, because of buffeting phenomenon, The sliding mode variable structure control alone can not meet the control requirements of the system. Therefore, an adaptive sliding mode control for the hybrid excitation maglev system is proposed. The adaptive sliding mode control is mainly divided into the following five steps. The switching surface of sliding mode control is confirmed. In the second step, the equivalent part of the control law of sliding mode control is solved. In the third step, an adaptive rule is designed to estimate the parameters of sliding mode control. By replacing the switching part of the sliding mode control law with this estimation parameter, a complete adaptive sliding mode control law. 4th steps is obtained. The Lyapunov function is constructed, and the reachability condition of the control is proved. 5th steps. The feasibility of the control method is verified by MATLAB simulation. Thirdly, in order to reduce the negative effect of buffeting phenomenon and improve the system stiffness to a great extent, a robust control based on HJI is proposed based on the previous adaptive sliding mode control. The L2 gain JnJ small system is introduced to represent the robust performance of the system. The better the robustness is, the better the robust performance is. The control theory is completed by reasonable design to satisfy the HJI inequality, and the feasibility of the control method is verified by MATLAB simulation. The simulation results of adaptive sliding mode control and adaptive sliding mode robust control based on HJI are compared to verify whether the latter is better than the former in improving the stiffness of the hybrid excitation maglev system.
【學(xué)位授予單位】:沈陽工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG659
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 寇寶泉;張魯;李立毅;張赫;;平面電動(dòng)機(jī)技術(shù)發(fā)展綜述[J];微電機(jī);2010年11期
2 張文躍;楊均悅;葛研軍;王剛軍;;斥力型磁懸浮平臺建模及仿真[J];武漢理工大學(xué)學(xué)報(bào)(信息與管理工程版);2010年01期
3 彭輝;徐錦華;侯海良;;模糊控制在磁懸浮球系統(tǒng)實(shí)時(shí)控制中的應(yīng)用[J];控制工程;2009年03期
4 景敏卿;劉恒;梁金星;虞烈;;二維高精度磁懸浮定位平臺的研究[J];西安交通大學(xué)學(xué)報(bào);2008年11期
5 郭慶鼎;劉德君;趙希梅;;基于輸入解耦的6DOF磁懸浮平臺懸浮高度的H_∞控制[J];電工技術(shù)學(xué)報(bào);2005年11期
6 郝曉紅,梅雪松,張東升,陶濤,姜歌東;新型磁懸浮精密定位平臺的研究[J];西安交通大學(xué)學(xué)報(bào);2005年09期
7 李黎川,丁玉成,盧秉恒;超精密磁懸浮工作臺及其解耦控制[J];機(jī)械工程學(xué)報(bào);2004年09期
8 王江潮,歐陽華,杜朝輝;德國磁懸浮列車的懸浮與驅(qū)動(dòng)系統(tǒng)[J];國外鐵道車輛;2004年03期
9 周勇為,常熹鈺,易仕和;低湍流度磁懸浮風(fēng)洞的氣動(dòng)和結(jié)構(gòu)設(shè)計(jì)[J];流體力學(xué)實(shí)驗(yàn)與測量;2001年04期
,本文編號:1591606
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1591606.html