添加鎳元素對(duì)鈦銅合金力學(xué)與腐蝕磨損性能的影響規(guī)律
本文關(guān)鍵詞: Ti-Cu-Ni合金 納米壓痕 納米力學(xué)性能 摩擦磨損 腐蝕 出處:《太原理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:鈦合金由于具有質(zhì)輕,比強(qiáng)度高,無毒性,良好的抗蝕性能以及優(yōu)異的生物相容性,已經(jīng)成為臨床廣泛使用的醫(yī)用金屬材料。TiCu合金作為醫(yī)用植入材料具有很大的應(yīng)用潛力。近年來,對(duì)該合金的成分、相組成、抗菌性能及電催化特性均做了較為深入的研究。作為醫(yī)用植入材料,需要綜合考慮其抗菌性能、力學(xué)性能和腐蝕磨損性能拓寬其應(yīng)用領(lǐng)域;赥iNi合金具有獨(dú)特的形狀記憶性能,本文在已有合金Ti_(70)Cu_(30)的基礎(chǔ)上,添加Ni對(duì)其進(jìn)行合金化。制備出新型塊體三元合金Ti_(65)Cu_(30)Ni_5和Ti_(60)Cu_(30)Ni_(10)。利用X射線衍射儀和輝光放電光譜儀對(duì)其相結(jié)構(gòu)和成分分布進(jìn)行表征;采用納米壓痕儀對(duì)Ti_(70)Cu_(30)、Ti_(65)Cu_(30)Ni_5和Ti_(60)Cu_(30)Ni_(10)合金的納米力學(xué)性能進(jìn)行了研究;采用電化學(xué)方法研究了合金在模擬人工體液中的電化學(xué)行為;采用球-盤摩擦磨損試驗(yàn)儀研究了合金的摩擦磨損性能。研究結(jié)果如下:1、對(duì)合金的組織結(jié)構(gòu)和成分分布進(jìn)行了分析。Ti_(70)Cu_(30)主要由CuTi和CuTi_3相組成;添加Ni合金化后,Ti_(65)Cu_(30)Ni_5主要由CuNiTi_2和TiNi_(0.8)Cu_(0.2)相組成,Ti_(60)Cu_(30)Ni_(10)有新的CuNi_(0.5)Ti_(0.5)O_2和CuNi_2Ti相出現(xiàn)。成分分布曲線顯示Ti、Cu和Ni元素含量的最大原子百分比與合金化比例基本相近。2、納米壓痕儀對(duì)Ti_(70)Cu_(30)、Ti_(65)Cu_(30)Ni_5、Ti_(60)Cu_(30)Ni_(10)的納米力學(xué)性能進(jìn)行了比較研究。實(shí)驗(yàn)結(jié)果表明,添加鎳元素有效提高了Ti_(70)Cu_(30)合金的硬度和抵抗外荷載的能力。5 at.%含量的鎳元素添加使合金具有較高的彈性模量,而10 at.%含量的鎳元素添加對(duì)合金彈性模量則有所降低。三種合金的彈性模量排序?yàn)門i_(65)Cu_(30)Ni_5Ti_(70)Cu_(30)Ti_(60)Cu_(30)Ni_(10)。3、采用動(dòng)電位極化曲線法和阻抗譜曲線法研究了三種合金在Hank's模擬體液中的電化學(xué)腐蝕性能。實(shí)驗(yàn)結(jié)果表明,添加鎳元素降低了Ti_(70)Cu_(30)合金的耐腐蝕性能。當(dāng)鎳含量高達(dá)10 at.%時(shí),合金在人工體液中劇烈腐蝕,發(fā)生大規(guī)模點(diǎn)蝕,結(jié)構(gòu)完全破壞。4、采用摩擦磨損試驗(yàn)儀對(duì)三種合金的摩擦磨損性能及機(jī)理進(jìn)行了研究。實(shí)驗(yàn)結(jié)果表明,在空氣中干摩擦?xí)r,三種合金的磨損均為粘著磨損,Ti_(65)Cu_(30)Ni_5合金的抗磨損性能最好,Ti_(60)Cu_(30)Ni_(10)合金最差。在模擬人工體液介質(zhì)中摩擦?xí)r,由于受電化學(xué)腐蝕的影響,三種合金的磨損機(jī)制各不相同。Ti_(60)Cu_(30)Ni_(10)主要是化學(xué)腐蝕磨損,Ti_(70)Cu_(30)呈現(xiàn)為磨粒磨損,Ti_(65)Cu_(30)Ni_5則介于兩者之間,這也導(dǎo)致Ti_(65)Cu_(30)Ni_5的耐磨損性能最高。
[Abstract]:Titanium alloys are characterized by light weight, high specific strength, non-toxicity, good corrosion resistance and excellent biocompatibility. TiCu alloy, which has been widely used in clinic, has great application potential as medical implant material. In recent years, the composition and phase composition of this alloy have been studied. Both antibacterial and electrocatalytic properties have been studied in depth. As a medical implant, the antibacterial properties of these materials need to be considered comprehensively. The mechanical properties and corrosion wear properties of TiNi alloys have been extended to a wide range of applications. Based on the unique shape memory properties of TiNi alloys, this paper is based on the existing alloys TiSZ 70 CuSP-30). The new bulk ternary alloys Ti_(65)Cu_(30)Ni_5 and TiS60 / CuD were prepared by alloying Ni. The phase structure and composition distribution were characterized by X-ray diffractometer and glow discharge spectrometer. The nanomechanical properties of TiSZ 70CuS cuti30 / TiSP / 65CuS / 30C / Ni5 and TiS / 60C / Cu30 / NiS / 10) alloys were studied by means of nanoindentation, and the electrochemical behavior of the alloys in simulated artificial body fluids was studied by electrochemical method, and the electrochemical behavior of the alloys in simulated artificial body fluids was studied by means of electrochemical method, and the electrochemical behavior of the alloys in simulated artificial body fluids was studied by means of electrochemical method. The friction and wear properties of the alloy were studied by using a ball disk friction and wear tester. The results are as follows: 1. The microstructure and composition distribution of the alloy are analyzed. The microstructure and composition distribution of the alloy are analyzed. The microstructure of the alloy is mainly composed of CuTi and CuTi_3 phases. After the addition of Ni alloying, new CuNi_(0.5)Ti_(0.5)O_2 and CuNi_2Ti phases have been found. The maximum atomic percentages of Titiao Cu and Ni contents are close to those of alloying ratio of 0.2. The maximum atomic percentage of Titiao Cu and Ni contents is close to that of alloying ratio. The maximum atomic percentage of Titiao Cu and Ni content is similar to that of alloying ratio. The experimental results show that, The addition of nickel can effectively improve the hardness and the ability to resist external loads of TiSHA70 / CuTi30) alloy. The addition of nickel elements with a content of 5.5at.% makes the alloy have higher modulus of elasticity. The elastic moduli of the three alloys were in the order of Tiji 65CuD, Ni5TiTi30, Ni5TiTi30, CuST-30TiS, 30CuST-30TiS, 30T, 30T, 30T, 10T. 3. The electrical properties of the three alloys in Hank's simulated body fluid were studied by potentiodynamic polarization curve and impedance spectrum method, while the elastic modulus of the alloy decreased with the addition of 10 at.% Ni element, and the number of the three alloys in the simulated body fluid of Hank's was studied by means of potentiodynamic polarization curve method and impedance curve method. Chemical corrosion properties. Experimental results show that, The addition of nickel reduced the corrosion resistance of TiSHAN 70C / CuN 30) alloy. When the nickel content was as high as 10 at.%, the alloy was severely corroded in artificial body fluid, resulting in massive pitting corrosion. The friction and wear properties and mechanism of the three alloys were studied by friction and wear tester. The experimental results show that the friction and wear properties of the three alloys are dry in air. The wear properties of the three alloys are the best in the case of adhesive wear and tear wear, and the wear resistance of the TiServ / Ni5 alloy is the best than that of the Tiken 60 / Cu / 30 / NiS / 10) alloy. When friction is simulated in artificial body fluid, the wear resistance of the alloy is due to the effect of electrochemical corrosion. The wear mechanism of the three alloys is different.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG146.23
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王振霞;趙遠(yuǎn)濤;單小林;于盛旺;劉小萍;賀志勇;;醫(yī)用鈦鎳合金表面改性技術(shù)的研究進(jìn)展[J];稀有金屬材料與工程;2016年05期
2 梁成浩;賈理男;袁傳軍;黃乃寶;;人工模擬體液中Ti,Ti-6Al-4V合金和Ti-Ni形狀記憶合金的縫隙腐蝕行為(英文)[J];稀有金屬材料與工程;2015年04期
3 鄭凱;于秀淳;郭征;郝玉琳;;生物金屬材料在骨科的應(yīng)用及發(fā)展[J];生物骨科材料與臨床研究;2013年02期
4 茅奕舒;崔向紅;王樹奇;李冬升;楊子潤(rùn);孫瑜;;Ti6Al4V合金的磨損行為和磨損機(jī)制[J];航空材料學(xué)報(bào);2013年02期
5 李曉丹;翟玉春;邱峰;劉濤濤;;納米SiC顆粒強(qiáng)化7075鋁合金在NaCl溶液中的電化學(xué)腐蝕行為[J];腐蝕科學(xué)與防護(hù)技術(shù);2012年02期
6 李興;楊凱;張穎;尤力;宋西平;;Beta-鈦與鎳鈦、不銹鋼正畸弓絲合金成分、表面形貌以及力學(xué)性能的對(duì)比研究[J];實(shí)用口腔醫(yī)學(xué)雜志;2012年01期
7 胡欣;李長(zhǎng)義;劉亞林;李宏捷;韓華;張連云;;加載載荷對(duì)鈦鋯鈮錫合金摩擦磨損性能的影響[J];中華老年口腔醫(yī)學(xué)雜志;2011年05期
8 郝維昌;董平;蘇向東;王天民;;NiTi合金生物醫(yī)用材料表面改性的研究進(jìn)展[J];材料導(dǎo)報(bào);2009年07期
9 徐群杰;黃詩俊;;銅鎳合金耐蝕性影響的研究進(jìn)展[J];上海電力學(xué)院學(xué)報(bào);2007年02期
10 劉克勇;雷永超;蔡偉;趙連城;;鈦鎳形狀記憶合金的研究進(jìn)展[J];材料研究與應(yīng)用;2007年02期
相關(guān)博士學(xué)位論文 前4條
1 王蘭;鈦合金磨損行為及磨損機(jī)理的研究[D];江蘇大學(xué);2014年
2 彭欣;海水環(huán)境中帶銹碳鋼腐蝕電化學(xué)行為及相關(guān)參數(shù)的研究[D];中國(guó)海洋大學(xué);2013年
3 索忠源;鈦銅基合金非晶形成能力與力學(xué)性能的研究[D];沈陽工業(yè)大學(xué);2009年
4 闞前華;超彈性NiTi合金本構(gòu)模型研究及其有限元應(yīng)用[D];西南交通大學(xué);2009年
,本文編號(hào):1543104
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1543104.html