Zr基塊體非晶合金疏水性表面的構(gòu)造
發(fā)布時(shí)間:2018-01-22 11:26
本文關(guān)鍵詞: Zr基塊體非晶合金 疏水性 化學(xué)腐蝕 電化學(xué)腐蝕 微納復(fù)合結(jié)構(gòu)表面 出處:《煙臺(tái)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:基于荷葉表面的自清潔效應(yīng),材料表面的疏水性能受到廣泛關(guān)注,表面的超疏水性能更是受到材料、仿生、高分子等領(lǐng)域的青睞成為研究熱點(diǎn)之一。對(duì)于固體材料,其表面能及表面微結(jié)構(gòu)是決定表面超疏水性的最關(guān)鍵因素。傳統(tǒng)金屬材料由于自身晶粒尺寸及晶界效應(yīng)導(dǎo)致難以在其表面構(gòu)造理想的微納復(fù)合結(jié)構(gòu),而其在力學(xué)性能和耐腐蝕性能等方面有局限性,導(dǎo)致即使在其表面構(gòu)造了微納復(fù)合結(jié)構(gòu),材料的應(yīng)用范圍也受到較大限制。而非晶合金的高強(qiáng)度、高硬度和高耐腐蝕性能等方面都具有獨(dú)特的優(yōu)勢(shì),具有廣泛的應(yīng)用前景。本論文選用玻璃形成能力大、熱穩(wěn)定性高的(Zr_(0.55)Cu_(0.3)Al_(0.1)Ni_(0.05))_(98)Y_2和(Zr_(0.58)Nb_(0.03)Cu_(0.16)Ni_(0.13)Al_(0.10))_(98)Lu_2塊體非晶合金作為研究對(duì)象,通過(guò)化學(xué)浸泡腐蝕和電化學(xué)腐蝕的方法在其表面構(gòu)造微納復(fù)合結(jié)構(gòu),并通過(guò)低表面能的硬脂酸進(jìn)行再修飾以獲得疏水性的表面;瘜W(xué)浸泡實(shí)驗(yàn)表明,(Zr_(0.55)Cu_(0.3)Al_(0.1)Ni_(0.05))_(98)Y_2試樣在不同比例的HF:H_2O_2:H_2O腐蝕液后表面接觸角沒(méi)有明顯增加,表明其表面疏水性沒(méi)有發(fā)生明顯改善。(Zr_(0.58)Nb_(0.03)Cu_(0.16)Ni_(0.13)Al_(0.10))_(98)Lu_2試樣在HF:H_2O_2:H_2O=1:1:12(單位為ml)濃度下腐蝕,每次腐蝕1min,腐蝕10次,其表面接觸角由未腐蝕前的57°提高到98°,試樣表面的疏水性能由腐蝕前的親水性轉(zhuǎn)變?yōu)槭杷?SEM分析表明,腐蝕后表面形成了微米孔洞,其周圍存在許多微納米級(jí)的顆粒,這些微米和納米結(jié)構(gòu)共同在試樣表面構(gòu)成了微納復(fù)合結(jié)構(gòu)。電化學(xué)腐蝕實(shí)驗(yàn)表明,(Zr_(0.55)Cu_(0.3)Al_(0.1)Ni_(0.05))_(98)Y_2試樣在5vol%的鹽酸溶液中,在50mA恒電流下腐蝕45min后,表面接觸角能由未腐蝕前的67°提高到153°,其表面由親水性轉(zhuǎn)變?yōu)槌杷匦?SEM觀察發(fā)現(xiàn)試樣表面均勻分布著微米孔洞,孔洞壁上有微米凸起,納米級(jí)顆粒分布在凸起上,構(gòu)成了微納復(fù)合結(jié)構(gòu)。在同樣腐蝕條件下,(Zr_(0.58)Nb_(0.03)Cu_(0.16)Ni_(0.13)Al_(0.10))_(98)Lu_2試樣腐蝕35min后表面接觸角由未腐蝕前的57°增加到148°;SEM分析可知,腐蝕后試樣表面上均勻分布著微米級(jí)孔洞,孔洞周圍的球狀顆粒上存在更小的納米凸起,這些微觀組織相互交錯(cuò)共同構(gòu)成了微納復(fù)合結(jié)構(gòu)。
[Abstract]:Based on the self-cleaning effect of lotus leaf surface, the hydrophobicity of the surface of the material is widely concerned, and the superhydrophobicity of the surface is also affected by the material, bionic. Polymer and other fields of interest have become one of the research hotspots. For solid materials. The surface energy and surface microstructure are the most important factors to determine the hydrophobicity of the surface. Due to the grain size and grain boundary effect of traditional metal materials, it is difficult to construct an ideal micro-nano composite structure on its surface. However, its mechanical properties and corrosion resistance are limited, which leads to the limitation of the application range of the material even if the micro-nano composite structure is constructed on the surface of the alloy, and the high strength of the amorphous alloy. High hardness and high corrosion resistance have unique advantages and have wide application prospects. In this paper, glass forming ability is large. High thermal stability: 0.55 Cutix 0.3Altig 0.1 Nippon 0.05 tippon YSP 2 and 0.58NbSch / nbsp. 0.03). Cu_(0.16)Ni_(0.13)Al_(0.10))_(98)Lu_2 bulk amorphous alloy is used as the research object. The hydrophobic surface was obtained by chemical immersion corrosion and electrochemical corrosion, and modified by low surface energy stearic acid. ZR / T 0.55 / CuP 0.3 / Altip / 0.1 Nip / / 0.05 / / /. The surface contact angle of YStu2 sample did not increase obviously after the different proportion of HF:H_2O_2:H_2O corrosion solution. It shows that there is no obvious improvement in surface hydrophobicity. The Lu_2 sample was corroded at the concentration of 1: 1: 12 (in ml). The contact angle of the sample was increased from 57 擄to 98 擄after corrosion for 10 times and the hydrophobicity of the sample changed from hydrophilicity to hydrophobicity before corrosion. SEM analysis shows that there are many micro- and nanometer-sized particles around the surface of the corroded surface. These microstructures and nanostructures are formed on the surface of the samples. The electrochemical corrosion experiments show that the microstructures and nanostructures can be formed on the surface of the samples. The sample of 0.55 / Custav / 0.3Altil / Nitig / 0. 05 / T / T / T / T / T / C / C / C / C / C / C / C / C / C / C / C / C / C / C / C / C / C in the solution of 5 vol@@. After corrosion at 50 Ma constant current for 45 min, the surface contact angle was increased from 67 擄to 153 擄before corrosion, and the hydrophilicity of the surface changed from hydrophilicity to superhydrophobicity. SEM observation showed that there were micron holes distributed uniformly on the surface of the sample, and there were micron protrusions on the wall of the holes, and nano-particles were distributed on the protrusions, which formed a micro-nano composite structure under the same corrosion conditions. ZR / P 0.58 / NbS / 0.03 / CuP 0.16 / Nip / 0.13 / Al / T / 0.10 / T / T / T. The surface contact angle of Lu_2 specimen increased from 57 擄to 148 擄after corrosion for 35 minutes. SEM analysis shows that there are micrometer pores distributed uniformly on the surface of corroded samples, and smaller nano-protrusions exist on the spherical particles around the pores. These microstructures are interlaced with each other to form micro-nano composite structures.
【學(xué)位授予單位】:煙臺(tái)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG139.8
【參考文獻(xiàn)】
相關(guān)期刊論文 前4條
1 杜乾程;;超疏水性鐵基塊體非晶合金的制備及表征[J];化學(xué)工程與裝備;2014年07期
2 汪衛(wèi)華;;金屬玻璃研究簡(jiǎn)史[J];物理;2011年11期
3 ;Anisotropism of the Non-Smooth Surface of Butterfly Wing[J];Journal of Bionic Engineering;2009年01期
4 江雷;從自然到仿生的超疏水納米界面材料[J];現(xiàn)代科學(xué)儀器;2003年03期
相關(guān)碩士學(xué)位論文 前1條
1 夏婷;非晶合金可控表面微結(jié)構(gòu)的超疏水性研究[D];華中科技大學(xué);2013年
,本文編號(hào):1454534
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1454534.html
最近更新
教材專著