固定自耗電極充填法熔鑄的數(shù)值模擬
本文關(guān)鍵詞:固定自耗電極充填法熔鑄的數(shù)值模擬 出處:《遼寧工業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 固定自耗電極充填法 電渣熔鑄 溫度場 數(shù)值模擬 熔渣水平長度 熔池間距
【摘要】:電渣熔鑄以精煉和凝固雙優(yōu)特長,成為高品質(zhì)鑄件的重要生產(chǎn)方法。受到公共型腔限制,到目前為止用電渣熔鑄法鑄造形狀復(fù)雜鑄件仍無突破性進(jìn)展。為此,提出了固定自耗電極充填法熔鑄形狀復(fù)雜鑄件的新方法。固定自耗電極充填工藝在實(shí)施之前急需解決以下問題:(1)固態(tài)渣啟動電渣爐時,如果移動自耗電極所化熔渣不能與固定自耗電極接觸,則鑄件的熔鑄過程就無法正常啟動,故必須弄清移動自耗電極所化熔渣的水平長度;(2)熔鑄過程中移動自耗電極與固定自耗電極雙重熔化條件下兩個金屬熔池能否互通。針對上述問題,首先推導(dǎo)出一個符合固定自耗電極充填法熔鑄過程的數(shù)學(xué)模型、建立起相應(yīng)的偏微分方程和恰當(dāng)?shù)倪吔鐥l件,并編寫程序,計算了熔鑄初期固定自耗電極下端斜度不同的熔鑄系統(tǒng)的溫度場,并通過實(shí)驗(yàn)驗(yàn)證了溫度場數(shù)值模擬的準(zhǔn)確性。在此基礎(chǔ)上,計算了不同工藝參數(shù)下固定自耗電極充填法熔鑄初期化渣過程熔渣水平長度、熔鑄達(dá)到穩(wěn)定階段時的熔池間距。結(jié)果表明,鑄錠底部形狀數(shù)值模擬結(jié)果與實(shí)驗(yàn)結(jié)果基本吻合。通過數(shù)值模擬發(fā)現(xiàn),初期化渣過程中熔渣水平長度的有效距離和底水箱表面的水平長度隨著電流密度、電極寬度和電極厚度增加而增加且電極寬度有一個最大值,電極的橫截面形狀越細(xì)長熔渣的水平長度越短。熔鑄達(dá)到穩(wěn)定階段時隨著電流密度的增大,熔池間距減小,當(dāng)電流密度足夠大時兩金屬熔池互通;隨著電極寬度的增加,熔池間距減小,并且電極寬度增加是有一定限度的;隨著電極厚度的增加,熔池間距逐漸減小;隨著電極間距的增加,熔池間距變大;電極的橫截面形狀越細(xì)長,熔池間距越大,越不利于兩金屬熔池互通。
[Abstract]:Electroslag melting casting has become an important production method for high quality castings by refining and solidifying, which is limited by common cavity. So far, there has been no breakthrough in electroslag casting with complex shape castings. In this paper, a new method of fixed consumable electrode filling is put forward, which is urgent to solve the following problems before the implementation of the fixed consumable electrode filling process, when the solid slag starts up the electroslag furnace, it is urgent to solve the following problems before the implementation of the fixed consumable electrode filling process. If the slag can not contact with the fixed electrode, the casting process will not start normally, so the horizontal length of the slag should be made clear. 2) whether the two metal melting pools can interoperate under the condition of double melting of the moving consumable electrode and the fixed consumable electrode in the process of melting and casting. At first, a mathematical model of the melting and casting process in accordance with the fixed consumable electrode filling method is derived, and the corresponding partial differential equation and appropriate boundary conditions are established, and the program is written. The temperature field of the molten casting system with different slope at the lower end of the fixed consumable electrode in the initial stage of melting and casting is calculated, and the accuracy of the numerical simulation of the temperature field is verified by experiments. The horizontal length of slag in the initial slagging process of fixed consumable electrode filling method was calculated under different process parameters, and the melting pool spacing was calculated when the melting process reached the stable stage. The numerical simulation results of the bottom shape of the ingot are in good agreement with the experimental results. It is found that the effective distance of the slag horizontal length in the initial slagging process and the horizontal length of the bottom water tank surface with the current density. With the increase of electrode width and electrode thickness, the electrode width has a maximum value, the smaller the electrode cross section shape is, the shorter the horizontal length of slag is. When the melting casting reaches the stable stage, the current density increases. When the current density is large enough, the two metal melting pools interoperate; With the increase of electrode width, the distance between the melting pool decreases and the electrode width increases to a certain extent. With the increase of electrode thickness, the melting pool spacing decreases gradually. With the increase of electrode spacing, the melting pool spacing becomes larger. The longer the cross section of the electrode is, the greater the weld pool spacing is, which is not conducive to the interworking of the two metal melting pools.
【學(xué)位授予單位】:遼寧工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TF14;TG24
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王芳;李寶寬;;雙級串聯(lián)電渣重熔系統(tǒng)電磁場和焦耳熱場研究[J];東北大學(xué)學(xué)報(自然科學(xué)版);2011年04期
2 單美龍;王芳;李寶寬;陳瑞;宋照偉;;電渣重熔過程中焦耳熱與溫度場的有限元分析[J];材料與冶金學(xué)報;2011年S1期
3 劉喜海;王君卿;賈維國;高建軍;趙林;唐作濱;;核電用大型鋼錠電渣重熔工藝模擬及生產(chǎn)應(yīng)用[J];鑄造;2010年12期
4 宋錦春;王長周;張建剛;佟琨;;120t電渣重熔爐電極升降液壓控制系統(tǒng)研究[J];冶金設(shè)備;2010年05期
5 王芳;李寶寬;;電渣重熔過程中的電磁場和Joule熱分析[J];金屬學(xué)報;2010年07期
6 曹方;王偉;;電渣重熔過程的建模及智能控制方法[J];控制與決策;2010年03期
7 堯軍平;張磊;李海敏;;電渣熔鑄鋼錠微觀組織的模擬研究[J];鑄造技術(shù);2008年12期
8 ;Mathematical Model for Electroslag Remelting Process[J];Journal of Iron and Steel Research(International);2007年05期
9 于洋;李寶寬;;鋼連鑄電磁攪拌工藝中電磁力的計算[J];金屬學(xué)報;2006年05期
10 王安國;張廷安;豆志河;;電渣熔鑄過程渣池電場溫度場的ANSYS有限元分析[J];過程工程學(xué)報;2006年S1期
相關(guān)碩士學(xué)位論文 前2條
1 王子坤;非穩(wěn)態(tài)電渣重熔過程電磁場與溫度場的研究[D];東北大學(xué);2014年
2 張華;電渣熔鑄異形件溫度場數(shù)值模擬技術(shù)[D];機(jī)械科學(xué)研究總院;2013年
,本文編號:1438273
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1438273.html