利用熱力學(xué)方法研究甘氨酸和氯化鎂—乙醇加合物結(jié)晶動(dòng)力學(xué)
發(fā)布時(shí)間:2021-05-09 00:08
甘氨酸是一個(gè)重要的有機(jī)組分,廣泛用于食品、制藥、化學(xué)和農(nóng)業(yè)工業(yè)中。生物化工中的分離方法包括分步沉淀、結(jié)晶和離子交換等,分離成本占總制備成本的50%以上。為了開發(fā)更高效的分離方法,在不同介質(zhì)、溫度和濃度中,進(jìn)行熱力學(xué)性質(zhì)研究是非常有必要的。晶體產(chǎn)品的晶型控制在制藥方面也十分關(guān)鍵,因?yàn)殄e(cuò)誤晶型的采用將會(huì)導(dǎo)致危險(xiǎn)。因此,我們對(duì)甘氨酸成核、生長(zhǎng)以及不同溶劑介質(zhì)中的晶型轉(zhuǎn)變可能為其多晶型的篩選提供基礎(chǔ)。本論文的研究成果對(duì)理解其他氨基酸的多晶型也有重要的意義。以MgCl2為載體的多相Ziegler-Natta催化劑是用于聚丙烯的聚合反應(yīng)的。MgCl2首先利用醇類處理(多用乙醇),然后注入TiClU。前驅(qū)體中MgCl2/EtOH的比例的決定了得到的聚合體的活度和等規(guī)度。MgCl2·nEtOH的結(jié)晶動(dòng)力學(xué)有助于更深入理解從而控制結(jié)晶加合物的結(jié)構(gòu)。首先,我們采用動(dòng)態(tài)法測(cè)定了甘氨酸(α晶型)在不同溶液中的溶解度。在電解質(zhì)溶液中,測(cè)定了甘氨酸在溫度為283.15-333.15K,MgCl2濃度為0.5到3.5mol·kg-1時(shí)在MgCl2-H2O溶液中的溶解度,以及MgCl2濃度為0.5、1.0和1.520...
【文章來源】:中國(guó)科學(xué)院大學(xué)(中國(guó)科學(xué)院過程工程研究所)北京市
【文章頁數(shù)】:158 頁
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
Abstract
1 Introduction
1.1 Background
1.2 Measurement and Modeling of Solubility
1.3 Scope of this Work
1.4 Organization of the Thesis
1.5 Final Remarks
2 Literature Survey
2.1 Introduction
2.2 Solubilities of Glycine in Different Media
2.2.1 Glycine/water
2.2.2 Glycine/electrolyte/water
2.2.3 Glycine/acid-base/water
2.2.4 Glycine/alcohol/water
2.3 Previous Studies on Modeling Glycine Solubilities
2.3.1 Glycine/electrolyte/water
2.3.2 Glycine/acid-base/water
2.3.3 Glycine/alcohol/water
2.4 Theoretical Modeling
2.4.1 Bromley Model
2.4.2 Pitzer Model
2.4.3 Bromley-Zemaitis Model
2.4.4 ElecNRTL Model
2.4.5 The Extended UNIQUAC Model
2.4.6 Mixed Solvent Electrolyte (MSE) Model
2.4.7 Perturbation Theory
2.4.8 PC-SAFT
2.5 Introduction to OLI Software
2.6 Glycine
2.7 Polymorphism of Glycine
2.8 Crystallization
2.9 Supersaturation (Detailed in Section 6.1)
2.10 Driving Force for Crystallization
2.11 Homogeneous Nucleation
2.12 Heterogeneous Nucleation
2.13 Ostwald's Rule of Stages (Ostwald, 1897) (Kinetic control)
2.14 Thermodynamic Consideration (Weber et al.,1998)
2.15 Crystal Growth (Mullin, 2001)
2.15.1 Surface Energy
2.15.2 Adsorption Layer Theories
2.15.3 Diffusion Theories
2.16 Crystallization Kinetics
2.16.1 Nyvlt Approach(Nyvlt, 1983;Nyvlt et al.,1970:Nyvlt, 1968)
2.16.2 Kubota Approach (Kubota, 2008b)
2.16.3 Sangwal Approach(Sangwal,2009b)
2.17 Estimation of Interfacial Tension
3 Solubilities and Modeling of the Glycine in Mixed NaCl-MgCl_2 Solutions atHighly Concentrated Region
3.1 Abstract
3.2 Introduction
3.3 Experimental Section
3.3.1 Chemicals
3.3.2 Experimental Procedure
3.4 Thermodynamic Model
3.4.1 Chemical Equilibria
3.4.2 Equilibrium Constants
3.4.3 Activity Coefficient Model
3.5 Results and Discussion
3.5.1 Solubilities Measurements in the Glycine-MgCl_2-H_2O andGlycine-NaCl-MgCl_2-H_2O Systems
3.5.2 Model Parameterization
3.6 Conclusions
4 Modeling of Glycine Solubility in Aqueous HCl-MgCl_2 System and ItsApplication in Phase Transition of Glycine by Changing Media and Supersaturation
4.1 Abstract
4.2 Introduction
4.3 Experimental Section
4.3.1 Chemicals
4.3.2 Measurement of Solubilities
4.3.3 Polymorph Transformation
4.4 Thermodynamic Modeling Framework
4.4.1 Chemical Equilibrium Relationships
4.4.2 Equilibrium Constants
4.4.3 Activity Coefficient Model
4.5 Results and Discussion
4.5.1 Solubility Determination of Glycine in HCl and HCl-MgCl_2 Aqueous Solutions
4.5.2 Model Parameterization
4.5.3 Supersaturation Calculation
4.6 Polymorph Transformation of Glycine
4.7 Conclusions
5 Solid-Liquid Equilibria for the Glycine-Alcohol-NaCl-H_2O System
5.1 Abstract
5.2 Introduction
5.3 Experimental Section
5.3.1 Chemical Agents
5.3.2 Solubility Determination
5.4 Thermodynamic Modeling
5.4.1 Chemical Equilibrium Relationships
5.4.2 Activity Coefficient Model
5.5 Results and Discussion
5.5.1 Solubility of Glycine in Ethanol and Ethanol-NaCl Aqueous Solutions
5.5.2 Solubility of Glycine in 1-propanol and 1-propanol-NaCl Aqueous Solutions
5.5.3 Solubility of NaCl in alcohol (ethanol/1-propanol)-glycine-H_2O System
5.5.4 Model Parameterization
5.6 Conclusions
6 Crystallization Kinetics of MgCl_2-Ethanol Adduct as a Support for theZiegler-Natta Catalyst with a Thermodynamic Approach
6.1 Abstract
6.2 Introduction
6.3 Experimental Section
6.3.1 Chemicals
6.3.2 Experimental Setup
6.3.3 Measurement of Metastable Zone Width (MSZW)
6.3.4 Measurement of Induction Time
6.3.5 Supersaturation Calculation
6.3.6 Activity Coefficient
6.4 Results and Discussion
6.4.1 Validation of Calculation by OLI Software
6.4.2 Metastable Zone Width (MSZW)
6.4.3 Nyvlt's Approach
6.4.4 Sangwal's Approach
6.4.5 Induction time
6.4.6 Estimation of Interfacial Tension
6.5 Conclusions
7 Conclusions and Recommendations
7.1 Conclusions
7.2 Claims to Originality
7.3 Suggestions for Future Work
Nomenclature
References
Acknowledgement
Curriculum Vitae
本文編號(hào):3176236
【文章來源】:中國(guó)科學(xué)院大學(xué)(中國(guó)科學(xué)院過程工程研究所)北京市
【文章頁數(shù)】:158 頁
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
Abstract
1 Introduction
1.1 Background
1.2 Measurement and Modeling of Solubility
1.3 Scope of this Work
1.4 Organization of the Thesis
1.5 Final Remarks
2 Literature Survey
2.1 Introduction
2.2 Solubilities of Glycine in Different Media
2.2.1 Glycine/water
2.2.2 Glycine/electrolyte/water
2.2.3 Glycine/acid-base/water
2.2.4 Glycine/alcohol/water
2.3 Previous Studies on Modeling Glycine Solubilities
2.3.1 Glycine/electrolyte/water
2.3.2 Glycine/acid-base/water
2.3.3 Glycine/alcohol/water
2.4 Theoretical Modeling
2.4.1 Bromley Model
2.4.2 Pitzer Model
2.4.3 Bromley-Zemaitis Model
2.4.4 ElecNRTL Model
2.4.5 The Extended UNIQUAC Model
2.4.6 Mixed Solvent Electrolyte (MSE) Model
2.4.7 Perturbation Theory
2.4.8 PC-SAFT
2.5 Introduction to OLI Software
2.6 Glycine
2.7 Polymorphism of Glycine
2.8 Crystallization
2.9 Supersaturation (Detailed in Section 6.1)
2.10 Driving Force for Crystallization
2.11 Homogeneous Nucleation
2.12 Heterogeneous Nucleation
2.13 Ostwald's Rule of Stages (Ostwald, 1897) (Kinetic control)
2.14 Thermodynamic Consideration (Weber et al.,1998)
2.15 Crystal Growth (Mullin, 2001)
2.15.1 Surface Energy
2.15.2 Adsorption Layer Theories
2.15.3 Diffusion Theories
2.16 Crystallization Kinetics
2.16.1 Nyvlt Approach(Nyvlt, 1983;Nyvlt et al.,1970:Nyvlt, 1968)
2.16.2 Kubota Approach (Kubota, 2008b)
2.16.3 Sangwal Approach(Sangwal,2009b)
2.17 Estimation of Interfacial Tension
3 Solubilities and Modeling of the Glycine in Mixed NaCl-MgCl_2 Solutions atHighly Concentrated Region
3.1 Abstract
3.2 Introduction
3.3 Experimental Section
3.3.1 Chemicals
3.3.2 Experimental Procedure
3.4 Thermodynamic Model
3.4.1 Chemical Equilibria
3.4.2 Equilibrium Constants
3.4.3 Activity Coefficient Model
3.5 Results and Discussion
3.5.1 Solubilities Measurements in the Glycine-MgCl_2-H_2O andGlycine-NaCl-MgCl_2-H_2O Systems
3.5.2 Model Parameterization
3.6 Conclusions
4 Modeling of Glycine Solubility in Aqueous HCl-MgCl_2 System and ItsApplication in Phase Transition of Glycine by Changing Media and Supersaturation
4.1 Abstract
4.2 Introduction
4.3 Experimental Section
4.3.1 Chemicals
4.3.2 Measurement of Solubilities
4.3.3 Polymorph Transformation
4.4 Thermodynamic Modeling Framework
4.4.1 Chemical Equilibrium Relationships
4.4.2 Equilibrium Constants
4.4.3 Activity Coefficient Model
4.5 Results and Discussion
4.5.1 Solubility Determination of Glycine in HCl and HCl-MgCl_2 Aqueous Solutions
4.5.2 Model Parameterization
4.5.3 Supersaturation Calculation
4.6 Polymorph Transformation of Glycine
4.7 Conclusions
5 Solid-Liquid Equilibria for the Glycine-Alcohol-NaCl-H_2O System
5.1 Abstract
5.2 Introduction
5.3 Experimental Section
5.3.1 Chemical Agents
5.3.2 Solubility Determination
5.4 Thermodynamic Modeling
5.4.1 Chemical Equilibrium Relationships
5.4.2 Activity Coefficient Model
5.5 Results and Discussion
5.5.1 Solubility of Glycine in Ethanol and Ethanol-NaCl Aqueous Solutions
5.5.2 Solubility of Glycine in 1-propanol and 1-propanol-NaCl Aqueous Solutions
5.5.3 Solubility of NaCl in alcohol (ethanol/1-propanol)-glycine-H_2O System
5.5.4 Model Parameterization
5.6 Conclusions
6 Crystallization Kinetics of MgCl_2-Ethanol Adduct as a Support for theZiegler-Natta Catalyst with a Thermodynamic Approach
6.1 Abstract
6.2 Introduction
6.3 Experimental Section
6.3.1 Chemicals
6.3.2 Experimental Setup
6.3.3 Measurement of Metastable Zone Width (MSZW)
6.3.4 Measurement of Induction Time
6.3.5 Supersaturation Calculation
6.3.6 Activity Coefficient
6.4 Results and Discussion
6.4.1 Validation of Calculation by OLI Software
6.4.2 Metastable Zone Width (MSZW)
6.4.3 Nyvlt's Approach
6.4.4 Sangwal's Approach
6.4.5 Induction time
6.4.6 Estimation of Interfacial Tension
6.5 Conclusions
7 Conclusions and Recommendations
7.1 Conclusions
7.2 Claims to Originality
7.3 Suggestions for Future Work
Nomenclature
References
Acknowledgement
Curriculum Vitae
本文編號(hào):3176236
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/3176236.html
最近更新
教材專著