利用木糖同時(shí)產(chǎn)電和產(chǎn)氫的微生物燃料電池性能及機(jī)制研究
發(fā)布時(shí)間:2021-04-15 06:17
化石能源的大量使用導(dǎo)致了嚴(yán)重的環(huán)境問題。無污染的可再生能源如太陽能、風(fēng)能、生物質(zhì)能的使用有望緩解能源與環(huán)境的矛盾。其中,生物質(zhì)能源被認(rèn)為是最具潛力的可再生能源之一。微生物燃料電池(MFC)是一種可以將有機(jī)物直接高效轉(zhuǎn)化為電能的新技術(shù)。MFC能夠?qū)⑸镔|(zhì)直接轉(zhuǎn)化為電能,應(yīng)用潛力巨大。但是,目前MFC轉(zhuǎn)化生物質(zhì)效率低下,主要限制性因素之一是MFC難以高效將生物質(zhì)來源木糖高效轉(zhuǎn)化為能源產(chǎn)品。針對這一關(guān)鍵性限制因素,本研究通過菌株篩選,獲得了一株能夠以木糖為唯一底物產(chǎn)電的新型產(chǎn)電菌,并建立了高效木糖MFC。進(jìn)一步,發(fā)現(xiàn)該MFC利用木糖產(chǎn)電的同時(shí)能夠產(chǎn)氫,實(shí)現(xiàn)了木糖同時(shí)轉(zhuǎn)化為生物氫和生物電,為木糖的高效能源化轉(zhuǎn)化提供了新的路徑。主要研究內(nèi)容及結(jié)果如下:篩選獲得了以木糖為唯一電子供體的新型產(chǎn)電微生物。然后,分離并鑒定了一種新的產(chǎn)電酵母菌株(Cystobasidium slooffiae菌株JSUX1),該菌株可以通過使用木糖作為唯一碳和能源在MFC中發(fā)電。該菌株能夠產(chǎn)生顯著的電流密度,并具有快速代謝木糖的能力。進(jìn)一步研究發(fā)現(xiàn),該菌株在厭氧培養(yǎng)條件下或在MFC中可以利用木糖產(chǎn)生生物氫氣。因此,利用此...
【文章來源】:江蘇大學(xué)江蘇省
【文章頁數(shù)】:135 頁
【學(xué)位級(jí)別】:博士
【文章目錄】:
Acknowledgements
摘要
Abstract
List of Abbreviations
List of Symbols
Chapter1:General introduction
1.1 Renewable energy
1.2 Overview of microbial fuel cell(MFC)
1.3 MFC applications and advantages
1.3.1 Wastewater treatment
1.3.2 Biological production of hydrogen
1.3.3 Batteries for biosensing
1.4 Biological aspect of MFC
1.4.1 Electroactive microorganisms(EAMs)
1.4.2 Biofilm formation
1.4.3 Electron transfer mechanism
1.5 Physical aspect of MFC
1.5.1 Substrates used for MFC
1.5.1.1 Xylose a derived by-product from biomass
1.5.1.2 Organic/Substrate loading rate(OLR)
1.5.2 Temperature
1.5.3 pH
1.6 MFC configuration and materials
1.6.1 Reactor configuration
1.6.2 Separator
1.6.3 External Resistance
1.6.4 Electrode materials and modification
1.7 Hypotheses
1.8 Objective and thesis overview
Chapter2:Strain screening and acclimation for xylose-fueled MFC
2.1 Introduction
2.2 Materials and methods
2.2.1 Materials
2.2.2 MFC system operation
2.2.3 Strain isolation technique and growth conditions
2.2.4 Strain characterization and growth rate
2.2.4.1 SEM analysis
2.2.5 DNA extraction and phylogenetic analysis
2.3 Results and discussions
2.3.1 Strain identification and characterization
2.3.2 Bioelectricity generation from MFC with strain JSUX1
2.4 Conclusion
Chapter3:Simultaneous biohydrogen and bioelectricity production from xylose in MFC by newly isolated yeast of Cystobasidium slooffiae JSUX
3.1 Introduction
3.2 Materials and methods
3.2.1 Acclimation strategy
3.2.2 MFC configuration
3.2.3 Electrochemical analysis
3.2.3.1 Current measurement
3.2.3.2 Polarization curve
3.2.3.3 Cyclic voltammetry(CV)
3.2.4 Analytical methods
3.2.4.1 High-performance liquid chromatography(HPLC)analysis
3.2.4.2 Fluorescence spectroscopy
3.2.4.3 Biosensing analysis
3.2.4.4 Biohydrogen detection
3.2.4.5 SEM analysis of electrode
3.2.4.6 Assessment of cell viability
3.3 Results and discussions
3.3.1 Strain Acclimation
3.3.2 MFC performance
3.3.3 Underlying extracellular electron transfer mechanism for JSUX1
3.3.4 Enhanced bioelectricity production with exogenous addition of riboflavin
3.3.5 Xylose metabolism in MFC
3.3.6 Biofilm stability and viability in MFC
3.4 Conclusion
Chapter4:Polyaniline modification of electrodes for performance enhancement of xylose-fueled MFC
4.1.Introduction
4.2.Materials and methods
4.2.1 Precursor deposition of Polyaniline(PANI)
4.2.2 MFC set-up and operation
4.2.3 Electrochemical measurement
4.2.4 Analytical techniques
4.3.Results and discussions
4.3.1 PANI modification and characterization
4.3.2 Enhanced MFC performance by PANI modified electrode
4.3.3 Electrochemical analysis
4.4.Conclusion
Chapter5:In-situ assembly of3D graphene hydrogel electrode for performance enhancement of xylose-fueled MFC
5.1 Introduction
5.2 Materials and methods
5.2.1 Fabrication of3D reduced graphene oxide electrodes
5.2.2 Characterization
5.2.3 Electrochemical analysis
5.3 Results and discussions
5.3.1 In-situ assembly of3D-rGO hydrogel electrode and characterization
5.3.2 Enhanced MFC performance by graphene hydrogel electrode
5.3.3 Electrochemical analysis
5.4 Conclusion
Chapter6:General conclusions and perspectives
6.1 Summaries
6.2 Novelties
6.3 Future works
Bibliography
Appendices
Publications
本文編號(hào):3138809
【文章來源】:江蘇大學(xué)江蘇省
【文章頁數(shù)】:135 頁
【學(xué)位級(jí)別】:博士
【文章目錄】:
Acknowledgements
摘要
Abstract
List of Abbreviations
List of Symbols
Chapter1:General introduction
1.1 Renewable energy
1.2 Overview of microbial fuel cell(MFC)
1.3 MFC applications and advantages
1.3.1 Wastewater treatment
1.3.2 Biological production of hydrogen
1.3.3 Batteries for biosensing
1.4 Biological aspect of MFC
1.4.1 Electroactive microorganisms(EAMs)
1.4.2 Biofilm formation
1.4.3 Electron transfer mechanism
1.5 Physical aspect of MFC
1.5.1 Substrates used for MFC
1.5.1.1 Xylose a derived by-product from biomass
1.5.1.2 Organic/Substrate loading rate(OLR)
1.5.2 Temperature
1.5.3 pH
1.6 MFC configuration and materials
1.6.1 Reactor configuration
1.6.2 Separator
1.6.3 External Resistance
1.6.4 Electrode materials and modification
1.7 Hypotheses
1.8 Objective and thesis overview
Chapter2:Strain screening and acclimation for xylose-fueled MFC
2.1 Introduction
2.2 Materials and methods
2.2.1 Materials
2.2.2 MFC system operation
2.2.3 Strain isolation technique and growth conditions
2.2.4 Strain characterization and growth rate
2.2.4.1 SEM analysis
2.2.5 DNA extraction and phylogenetic analysis
2.3 Results and discussions
2.3.1 Strain identification and characterization
2.3.2 Bioelectricity generation from MFC with strain JSUX1
2.4 Conclusion
Chapter3:Simultaneous biohydrogen and bioelectricity production from xylose in MFC by newly isolated yeast of Cystobasidium slooffiae JSUX
3.1 Introduction
3.2 Materials and methods
3.2.1 Acclimation strategy
3.2.2 MFC configuration
3.2.3 Electrochemical analysis
3.2.3.1 Current measurement
3.2.3.2 Polarization curve
3.2.3.3 Cyclic voltammetry(CV)
3.2.4 Analytical methods
3.2.4.1 High-performance liquid chromatography(HPLC)analysis
3.2.4.2 Fluorescence spectroscopy
3.2.4.3 Biosensing analysis
3.2.4.4 Biohydrogen detection
3.2.4.5 SEM analysis of electrode
3.2.4.6 Assessment of cell viability
3.3 Results and discussions
3.3.1 Strain Acclimation
3.3.2 MFC performance
3.3.3 Underlying extracellular electron transfer mechanism for JSUX1
3.3.4 Enhanced bioelectricity production with exogenous addition of riboflavin
3.3.5 Xylose metabolism in MFC
3.3.6 Biofilm stability and viability in MFC
3.4 Conclusion
Chapter4:Polyaniline modification of electrodes for performance enhancement of xylose-fueled MFC
4.1.Introduction
4.2.Materials and methods
4.2.1 Precursor deposition of Polyaniline(PANI)
4.2.2 MFC set-up and operation
4.2.3 Electrochemical measurement
4.2.4 Analytical techniques
4.3.Results and discussions
4.3.1 PANI modification and characterization
4.3.2 Enhanced MFC performance by PANI modified electrode
4.3.3 Electrochemical analysis
4.4.Conclusion
Chapter5:In-situ assembly of3D graphene hydrogel electrode for performance enhancement of xylose-fueled MFC
5.1 Introduction
5.2 Materials and methods
5.2.1 Fabrication of3D reduced graphene oxide electrodes
5.2.2 Characterization
5.2.3 Electrochemical analysis
5.3 Results and discussions
5.3.1 In-situ assembly of3D-rGO hydrogel electrode and characterization
5.3.2 Enhanced MFC performance by graphene hydrogel electrode
5.3.3 Electrochemical analysis
5.4 Conclusion
Chapter6:General conclusions and perspectives
6.1 Summaries
6.2 Novelties
6.3 Future works
Bibliography
Appendices
Publications
本文編號(hào):3138809
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/3138809.html
最近更新
教材專著