具有Fe過渡層的新型燃料電池陽極的制備和性能研究
[Abstract]:The solid oxide fuel cell (SOFC) is an all-solid-state power generation device which directly converts chemical energy into electric energy, and has the advantages of being environment-friendly, high in fuel utilization efficiency, wide in fuel application range and the like. The traditional SOFC operating temperature is often at 800 擄 C or even higher, and the high-temperature operation brings many difficult problems, affecting the popularization and promotion of the battery. In order to avoid the adverse effect brought by high-temperature operation, the running temperature of the battery is reduced to become the hot trend of the research in recent years. La0. 9Sr0. 1Ga0. 8Mg0. 2O3-1 (LSGM) is an excellent medium-temperature electrolyte material, exhibits excellent oxygen ion conductivity at 600-800 擄 C, and its ion migration number is 1 in a wide oxygen partial pressure range (10-22-1 atm), and has high mechanical strength and good chemical stability. is a very promising medium temperature SOFC electrolyte material. However, it has been found that the LSGM electrolyte material is easy to react with the Ni-based anode of the cell to form a high-resistance phase such as La Ni O3, La Sr Ga3O7 and La Sr Ga O4, which significantly reduces the output performance of the battery. At present, the main scheme to solve this problem is to introduce the La2O3-doped CeO _ 2 (LDC) into the transition layer between the Ni-based anode and the LSGM, so as to avoid the direct contact of Ni with the LSGM to generate a high-temperature chemical reaction. The LDC transition layer can effectively inhibit the chemical reaction between Ni/ LSGM, but its ionic conductivity is much lower than that of LSGM, which will greatly increase the ohmic resistance of the cell. A new idea was made to prepare the anode support with a gradient distribution of Ni content, and a layer of Fe transition layer was introduced between the Ni-based gradient anode and the LSGM electrolyte membrane. The scheme has the following advantages: firstly, the Fe transition layer can block the high-temperature solid-state chemical reaction in the co-sintering of the LSGM and the Ni-based anode; secondly, the mutual diffusion of the elements between the Ni/ Fe layers during the high-temperature co-sintering can realize the in-situ formation of the Ni-Fe alloy anode which is superior to the pure Ni anode. On the basis of successfully preparing a new type of anode, the output performance, the AC impedance spectrum and the Ni/ Fe element diffusion and microstructure of the battery were tested and analyzed. La0. 9Sr0. 1Ga0. 8Mg0. 2O3-1 (LSGM9182) powder was prepared by solid-phase reaction. The results of XRD test at 1400 擄 C show that the main phase of the powder is LSGM9182, accompanied by a small amount of heterophase. The electrical conductivity at 700 擄 C, 750 擄 C and 800 擄 C was 0.016 S? cm-1, 0. 026 S? cm-1 and 0.037 S? cm-1 at 700 擄 C, 750 擄 C and 800 擄 C, respectively, after the LSGM9182 powder was pressed and sintered. In this paper, a single cell of SOFC with no Fe transition layer was prepared by using the LSGM powder synthesized by the solid-phase method, and the Ni-based anode-supported single cell and the electrolyte-supported single cell were respectively prepared. The open-circuit voltage of the anode-supported SOFC at 800oC is 0.236V, the maximum output power is about 9.05m W? cm-2, the open-circuit voltage of the electrolyte-supported SOFC at 800oC is 1. 05V and the maximum power density is 38. 9 m W? cm-2. The analysis of the microstructure of the cell can find that the output power of the battery is low and the impedance is large, which results from the high temperature reaction between the Ni and the LSMG electrolyte. The results show that the diffusion depth of the Ni element in the LSGM electrolyte membrane reaches 17. m u.m. The interface of the (Ni O + GDC)/ (Fe2O3 + GDC) and (Ni O + YSZ)/ (Fe2O3 + YSZ) interface is prepared by the dry-pressure method, which is used to simulate the interface of the preparation phase of the anode. The diffusion of Ni to the Fe-rich layer in the interface model was studied under different sintering temperatures. and the thickness and the Fe content of the Fe-rich layer are optimized according to the diffusion depth of the Ni element. The results show that, when the mass ratio of Fe2O3 and GDC is 6: 4, the GDC can be connected to the framework to ensure the mechanical properties of the electrode and increase the area of the three-phase reaction zone. in ord to realize that absorption and blocking effect of the Fe-rich layer on the Ni element, the thickness of the Fe-rich layer is determined to be 15. m YSZ is used as the ion-conducting phase in the composite anode in order to increase the shrinkage-matching property between the materials and the mechanical strength of the battery pack. on the basis of the traditional anode support cell, the novel anode layer is added, and a novel single cell is prepared. An anode-supported SOFC and an electrolyte-supported SOFC were prepared. The best reduction temperature of the cell was 700 擄 C. The open-circuit voltage of the anode-supported SOFC at 800 擄 C was 0.718 V and the maximum power density was about 740 m W? cm-2. Even if the open-circuit voltage deviates from the theoretical value, the battery can still have higher power density, compared with the anode-supported SOFC with no Fe-layer, there are two orders of magnitude difference in the maximum power density, and it is proved that the introduction of the Fe layer has a great effect on improving the output performance of the battery. The open-circuit voltage of the electrolyte-supported cell at 800 擄 C is 1.08 V, the maximum power density is 148 m W? cm-2, and the output performance of the electrolyte-supported SOFC with no Fe layer is obviously improved. The EDX line scan showed no La element diffusion into the anode of Ni layer before and after battery test, and the diffusion depth and content of Ni element in the electrolyte were significantly reduced. The introduction of the Fe-rich layer anode plays an important role in the diffusion of the barrier Ni element and the improvement of the output performance of the battery.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:O611.4;TM911.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 程繼貴,鄧麗萍,孟廣耀;固體氧化物燃料電池陽極材料的制備和性能研究新進(jìn)展[J];兵器材料科學(xué)與工程;2002年06期
2 王兆文,李延祥,李慶峰,高炳亮,邱竹賢;鋁電池陽極材料的開發(fā)與應(yīng)用[J];有色金屬;2002年01期
3 黃賢良,趙海雷,吳衛(wèi)江,仇衛(wèi)華;固體氧化物燃料電池陽極材料的研究進(jìn)展[J];硅酸鹽學(xué)報;2005年11期
4 孫明濤,孫俊才,季世軍;固體氧化物燃料電池陽極研究[J];硅酸鹽通報;2005年01期
5 張文強(qiáng);于波;張平;陳靖;徐景明;;固體氧化物燃料電池陽極材料研究及其在高溫水電解制氫方面的應(yīng)用[J];化學(xué)進(jìn)展;2006年06期
6 劉磊;蔣榮立;張宇軒;張秀萍;劉曉娟;;碳基固體氧化物燃料電池陽極材料的研究[J];焦作大學(xué)學(xué)報;2011年01期
7 P.J.Grole'e;萬芳;;s緙焙陽極和陽極糊的生產(chǎn)[J];國外輕金屬;1965年10期
8 羅伯特·巴波伊恩;鄧樹濱;;鉑型陽極的新發(fā)展[J];國外艦船技術(shù)(材料類);1980年06期
9 陳玉璞;許廉;;鐵鈷復(fù)合氧化物涂層陽極材料的研究[J];氯堿工業(yè);1984年02期
10 余忠;陽極選擇與鍍刷制作[J];防腐與包裝;1985年04期
相關(guān)會議論文 前10條
1 喬金碩;孫克寧;張乃慶;周德瑞;;固體氧化物燃料電池直接氧化陽極研究進(jìn)展[A];2006年全國功能材料學(xué)術(shù)年會專輯[C];2006年
2 吳瞳;鞠克江;劉長瑞;;空氣電池陽極材料及制備工藝對性能的影響研究[A];第二十八屆全國化學(xué)與物理電源學(xué)術(shù)年會論文集[C];2009年
3 黃拔帆;殷京甌;李明利;;鈮基鉑復(fù)合陽極在我國的應(yīng)用[A];2000年材料科學(xué)與工程新進(jìn)展(下)——2000年中國材料研討會論文集[C];2000年
4 蔣漢祥;林琳;黃祖平;;PbSnAgCa四元陽極材料研制技術(shù)[A];2009(重慶)中西部第二屆有色金屬工業(yè)發(fā)展論壇論文集[C];2009年
5 楊俏;王鑫;劉延坤;馮玉杰;;MFC陽極材料預(yù)處理方法與電子傳遞機(jī)制影響機(jī)制研究[A];第六屆全國環(huán)境化學(xué)大會暨環(huán)境科學(xué)儀器與分析儀器展覽會摘要集[C];2011年
6 張景德;王樹禮;安濤;劉雪峰;邢麗娟;劉亞磊;;NiO/YSZ多孔陽極材料制備與性能[A];第十七屆全國高技術(shù)陶瓷學(xué)術(shù)年會摘要集[C];2012年
7 湯琪;龔江宏;;Ni/YSZ多孔陽極材料的制備及其性能研究[A];第十七屆全國高技術(shù)陶瓷學(xué)術(shù)年會摘要集[C];2012年
8 劉江;Scott A. Barnett;;直接碳?xì)浠衔锕腆w氧化物燃料電池陽極研究進(jìn)展[A];第十二屆中國固態(tài)離子學(xué)學(xué)術(shù)會議論文集[C];2004年
9 尹艷紅;朱威;郭勇;夏長榮;孟廣耀;楊書廷;;鈣摻雜的氧化鈰用于中溫SOFCs陽極材料研究[A];第十二屆中國固態(tài)離子學(xué)學(xué)術(shù)會議論文集[C];2004年
10 劉江;Scott A Barnett;;直接碳?xì)浠衔锕腆w氧化物燃料電池陽極研究進(jìn)展[A];第十二屆中國固態(tài)離子學(xué)學(xué)術(shù)會議論文集稀土專輯[C];2004年
相關(guān)重要報紙文章 前4條
1 記者 邰舉;韓開發(fā)出納米材料陽極涂布技術(shù)[N];科技日報;2007年
2 墨梅;中科院研制燃料電池新陽極材料[N];中國化工報;2008年
3 記者 王小龍;美開發(fā)出穩(wěn)定的金屬鋰陽極電池[N];科技日報;2014年
4 楊裕生;“電極”與“電池”存儲的能量別混淆[N];科技日報;2008年
相關(guān)博士學(xué)位論文 前10條
1 付仁春;導(dǎo)電聚苯胺復(fù)合陽極材料的制備及電化學(xué)性能研究[D];昆明理工大學(xué);2015年
2 張磊磊;雙鈣鈦礦固體氧化物燃料電池陽極材料的性能研究[D];吉林大學(xué);2010年
3 王涵多;管式陽極支撐固體氧化物燃料電池的制備和性能研究[D];華南理工大學(xué);2012年
4 張永春;鋁基鉛合金復(fù)合陽極的制備及電化學(xué)性能研究[D];昆明理工大學(xué);2014年
5 賀貝貝;中溫固體氧化物燃料電池新型陽極材料的制備和性能表征[D];中國科學(xué)技術(shù)大學(xué);2012年
6 李曉斌;陽極焙燒系統(tǒng)的檢測、建模與控制[D];西安理工大學(xué);2007年
7 彭新紅;鐵(Ⅲ)氧化物修飾微生物燃料電池陽極及其電容特性研究[D];南開大學(xué);2013年
8 丁冬;以碳?xì)浠衔餅槿剂系闹袦毓腆w氧化物燃料電池陽極和電解質(zhì)的制備和性能表征[D];中國科學(xué)技術(shù)大學(xué);2008年
9 丁姣;低成本陽極支撐型膜電解質(zhì)固體氧化物燃料電池的研究[D];華南理工大學(xué);2010年
10 羅丹;陽極負(fù)載中溫固體氧化物燃料電池關(guān)鍵材料的研究及單電池數(shù)值模擬[D];浙江大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 王帥;鋁基鉛銀合金的電化學(xué)性能研究[D];昆明理工大學(xué);2015年
2 蔣國祥;新型析氧陽極制備及性能研究[D];昆明理工大學(xué);2015年
3 寧慧利;含石墨烯鈦基金屬氧化物陽極性能改進(jìn)研究[D];山東大學(xué);2015年
4 付弋珊;具有Fe過渡層的新型燃料電池陽極的制備和性能研究[D];哈爾濱工業(yè)大學(xué);2015年
5 亓振蓮;聚苯胺改性陽極海底微生物燃料電池及電池性能分析[D];哈爾濱工業(yè)大學(xué);2015年
6 楊會苗;兼具電磁屏蔽與聲隱身功能的柔性復(fù)合陽極材料[D];哈爾濱工業(yè)大學(xué);2015年
7 王西寶;固體氧化物燃料電池合金基陽極材料的制備和性能研究[D];吉林大學(xué);2009年
8 馬學(xué)菊;固體氧化物燃料電池新型陽極材料的制備及性能研究[D];昆明理工大學(xué);2008年
9 吳迪;固體氧化物燃料電池陽極材料鑭摻雜鈦酸鍶的制備和性能研究[D];吉林大學(xué);2009年
10 李鶴;固體氧化物燃料電池合金基復(fù)合陽極材料的研究與應(yīng)用[D];吉林大學(xué);2011年
,本文編號:2425801
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2425801.html