納米級炭黑協(xié)同催化聚烯烴制備碳納米管及其網(wǎng)狀結構的研究
[Abstract]:The conversion of cheap plastics to advanced carbon nanomaterials can effectively reduce the preparation cost and provide an environmental protection approach for the treatment of waste plastics. However, waste plastics are usually mixtures of polyolefin, but the single metal catalysts used at present are not universal and can only be used in the catalysis of one kind of plastics. It was found that a trimetallic catalyst (Ni-Mo-Mg) and carbon black could efficiently catalyze the preparation of carbon nanotubes (CNTs) from different polyolefins and their reticular structure by using a trimetal catalyst (Ni-Mo-Mg) and carbon black. In situ Ni-Mo-Mg catalyst catalyzed (PP), of polypropylene. Carbon nanotubes were synthesized from polyethylene (PE), polystyrene (PS) and its mixture. The highest yields of carbon nanotubes were 26.24% 28.36% and 31.66%, respectively. With the addition of a synergistic additive, carbon black (CB), the maximum yield of carbon nanotubes can be increased to 53.56% and 59.83%, respectively. Scanning electron microscope (SEM), (SEM), transmission electron microscope (TEM), high resolution transmission electron microscope (TEM), (HRTEM), X ray diffractometer (XRD) and Raman spectrum (Raman) were used to analyze the morphology and structure of the carbon nanotubes. The graphitization degree was characterized and analyzed. The results show that the addition of carbon black can improve the morphology and graphitization of carbon nanotubes. Based on the experimental results, the high efficiency catalytic mechanism of catalyst Ni-Mo-Mg and the theory of synergistic action with carbon black were discussed in this paper. A carbon nanotube network structure was also synthesized by pyrolysis of polypropylene / Ni-Mo-Mg/ carbon black blends. Scanning Electron microscope (SEM) (SEM), Transmission Electron microscope (TEM) used to observe the Microstructure of carbon Nanotubes (CNTs) and X-ray diffractometer (XRD), Raman Spectroscopy (Raman), The graphitization degree, thermal stability and surface composition were measured by thermogravimetric analyzer (TGA) and X-ray photoelectron spectroscopy (XPS). The results show that the addition of CB-1 can not only increase the yield of CNTs, but also make them interconnect with each other to form a new network structure. The increasing yield of carbon nanotubes is related to the ability of carbon black to capture free radicals, and the ability to connect carbon nanotubes depends on the size of the carbon nanotubes.
【學位授予單位】:東北林業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TB383.1;TQ127.11
【相似文獻】
相關博士學位論文 前10條
1 楊明;碳納米管負載過渡金屬及其催化氧化性能研究[D];南京大學;2014年
2 吳改紅;碳納米管膠囊/聚乳酸復合纖維的制備及結構性能研究[D];東華大學;2017年
3 徐凱;電弧等離子體法制備石油殘渣基碳納米管及其應用[D];中國石油大學(北京);2016年
4 李長金;微納層疊擠出設備研發(fā)及聚丙烯/碳納米管復合材料結構與性能的研究[D];北京化工大學;2017年
5 易義武;石墨烯/碳納米管復合粉體的制備及應用研究[D];南昌大學;2017年
6 田維亮;蛭石復合功能材料設計合成與性能研究[D];北京化工大學;2017年
7 張書品;碳納米管(石墨烯)/錳鋅鐵氧體復合材料的溫控效應和熱電性能研究[D];山東大學;2017年
8 翟通;聚醚醚酮及其碳納米管復合材料表面金屬化的研究[D];天津大學;2016年
9 劉金濤;基于納米材料的活性粉末混凝土及其基本力學性能研究[D];浙江大學;2016年
10 任燁;咪唑類離子液體的負載對聚合物碳納米管復合材料性能的影響[D];北京化工大學;2016年
相關碩士學位論文 前10條
1 崔瑾仙;納米級炭黑協(xié)同催化聚烯烴制備碳納米管及其網(wǎng)狀結構的研究[D];東北林業(yè)大學;2017年
2 張文斌;摻氮碳納米管的制備及其催化硝基化合物加氫性能研究[D];湘潭大學;2017年
3 崔瑞敏;碳納米管/含氮化合物的球磨預處理及其對環(huán)氧樹脂性能的影響[D];北京化工大學;2017年
4 代利峰;摻雜對碳納米管導電性影響的理論研究[D];華北理工大學;2017年
5 刁加加;摻雜對碳納米管導電性影響的實驗研究[D];華北理工大學;2017年
6 徐元;碳納米管的改性修飾及應用研究[D];哈爾濱工程大學;2014年
7 崔博媈;碳納米管網(wǎng)絡結構導熱特性的分子動力學模擬研究[D];華北電力大學;2017年
8 張粲;碳納米管復合材料發(fā)熱器件的基本性能研究[D];南京航空航天大學;2017年
9 丁亞飛;弱氧化輔助的碳納米管陣列的制備工藝研究[D];南京航空航天大學;2017年
10 張瀚;碳納米管負載鈀和釕納米顆粒的制備及表征[D];海南大學;2017年
,本文編號:2397504
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2397504.html