超臨界萃取工藝參數(shù)優(yōu)化及其控制方法研究
[Abstract]:Supercritical CO2 extraction (Supercritical CO2 Extraction) is a new purification technology at room temperature, which has the advantages of high extraction efficiency, good product quality, low energy loss, safety and recoverability. The supercritical CO2 has both liquid and gas properties during extraction, so it has good solubility and mass transfer properties, especially for the extraction of natural products with high thermal sensitivity and unstable chemical properties. At present, it has been widely used in the extraction of natural flavor, Chinese herbal medicine, food industry, petrochemical industry and light industry. In this paper, Schisandra chinensis was used as the experimental material, and the extraction separation experiment was carried out in the supercritical C02 extractor. The results of the extraction experiment discussed the relationship between the technological parameters and the product indexes. A mathematical model of extraction process and yield based on support vector machine (SVM) and genetic algorithm (GA) was established to predict the extraction yield and optimize the supercritical extraction conditions. The main work and research results are summarized as follows: (1) the principle, equipment and application of supercritical CO2 separation technology are studied. The influence of the technological parameters of supercritical CO2 extraction on the extraction results is analyzed and discussed. (2) the basic principle and learning and training process of support vector machine are systematically explained, and the complexity of supercritical CO2 extraction process is pointed out. Based on the characteristics of support vector machine (SVM) global optimization, high training efficiency and global search ability of genetic algorithm, the prediction model of GA-SVM is established. The optimization system process parameter model based on multi-objective genetic algorithm is established, and the yield is weighted. Using this optimization model, the optimum process parameters such as extraction pressure, extraction temperature and so on, with yield as the optimization target, can be obtained. It provides a reasonable optimization strategy for enterprises and subsequent experiments. (3) the fuzzy control method based on weighting factor self-adjustment is studied and the control of supercritical extraction temperature is realized by the algorithm. Taking supercritical extraction temperature as input and hot water tank as controlled object, the simulation model of fuzzy control rule self-adjusting system based on extraction temperature is designed and the simulation results are analyzed.
【學(xué)位授予單位】:長春工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TQ028.32;TP273.4
【參考文獻】
相關(guān)期刊論文 前10條
1 成詩明,張樹海,張景林;超臨界流體技術(shù)應(yīng)用研究[J];安徽化工;2003年01期
2 汪煥林;曹長年;馮麗紅;;超臨界CO_2流體萃取柑橘皮精油工藝的研究[J];安徽農(nóng)業(yè)科學(xué);2009年19期
3 陳昊;厲虹;;基于粒子群算法的無刷直流電機調(diào)速系統(tǒng)應(yīng)用研究[J];北京機械工業(yè)學(xué)院學(xué)報;2008年04期
4 羅剛;陳小云;陳郁;;遺傳神經(jīng)網(wǎng)絡(luò)在模擬電路故障診斷中的應(yīng)用[J];長春理工大學(xué)學(xué)報(自然科學(xué)版);2009年03期
5 張廣延,楊儒,于宏燕,李敏;超臨界流體狀態(tài)下無機材料的合成[J];材料導(dǎo)報;2003年08期
6 王廣雄,何雨奮;多目標(biāo)遺傳算法和伺服設(shè)計中的尋優(yōu)問題[J];電機與控制學(xué)報;1997年03期
7 鄭永春,羅曉星;超臨界二氧化碳流體萃取技術(shù)的特點和研究進展[J];大理學(xué)院學(xué)報;2002年04期
8 廖傳華;超臨界CO_2萃取技術(shù)的工業(yè)應(yīng)用[J];過濾與分離;2003年02期
9 E.Bach ,劉玉莉;超臨界流體染色技術(shù)的歷史、現(xiàn)狀和前景[J];國外紡織技術(shù);2004年03期
10 銀建中,畢明樹,孫獻文,李志義,丁信偉;超臨界CO_2萃取沙棘油的實驗研究及數(shù)值模擬[J];高;瘜W(xué)工程學(xué)報;2001年05期
相關(guān)碩士學(xué)位論文 前10條
1 余君蘭;全數(shù)字電動執(zhí)行器的開發(fā)與研究[D];中南大學(xué);2004年
2 閻綱;基于MSP430的三相變頻調(diào)速系統(tǒng)的設(shè)計研究[D];中南大學(xué);2004年
3 張琳;基于GA-BP混合算法的轉(zhuǎn)爐終點優(yōu)化控制模型[D];重慶大學(xué);2004年
4 郭衛(wèi)鋼;基于OPC技術(shù)的液位系統(tǒng)網(wǎng)絡(luò)模糊控制平臺研究[D];中南大學(xué);2008年
5 李濤;基于遺傳神經(jīng)網(wǎng)絡(luò)的糧食產(chǎn)量預(yù)測方法研究[D];哈爾濱工程大學(xué);2008年
6 李世超;谷糠油的超臨界CO_2萃取及精煉[D];河北科技大學(xué);2010年
7 李杰;超臨界CO_2萃取雞矢藤中有效成分的工藝研究[D];鄭州大學(xué);2012年
8 石楠;模糊自整定PID控制算法在分子蒸餾裝置中的應(yīng)用研究[D];長春工業(yè)大學(xué);2012年
9 胡彩霞;基于GA-BP算法分子蒸餾參數(shù)檢測及預(yù)測優(yōu)化的研究[D];長春工業(yè)大學(xué);2012年
10 符營營;AOD爐冶煉中低碳鉻鐵爐渣堿度優(yōu)化及預(yù)報技術(shù)研究[D];長春工業(yè)大學(xué);2013年
,本文編號:2335109
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2335109.html