不同形貌鈮酸鉀功能組裝體的制備及其性能研究
[Abstract]:The conversion of solar energy to clean and renewable hydrogen energy by photocatalytic reduction of water to hydrogen has become a hot spot in the field of photocatalysis. Potassium niobate is a stable, cheap, adjustable and easily modified semiconductor, which has potential applications in photocatalytic reduction of water for hydrogen production and sensing. In this paper, a variety of photocatalysts were prepared by using reductive graphene instead of noble metal Pt as co-catalysts and assembled with potassium niobate with different morphologies, and their activity in photocatalytic reduction of water for hydrogen production was studied. Stability and electron transfer mechanism. Secondly, the layered and ordered potassium niobate / Ag20 composite films were assembled and their Raman response to low concentration crystal violet was studied. The main research contents are as follows: a novel RGO/ potassium niobate composite nano-axis was prepared by inserting reduced graphene oxide (RGO),) in the crimp process of potassium niobate nanoparticles. The structure, morphology and optical properties of potassium niobate / RGO composite nano-axis were characterized by XRD,TEM, solid-state UV-Vis diffuse reflectance spectroscopy. The photocatalytic reduction activity of potassium niobate / RGO nanoaxis for hydrogen production from water under UV irradiation was studied. The results show that the photocatalytic hydrogen production of potassium niobate nanoaxis can be increased by 3.1 times with a small amount of RGO (2%), and the performance is stable. Fluorescence spectra and AC impedance spectra show that the introduction of RGO can effectively improve the separation efficiency of photogenerated electrons and holes in the potassium niobate nanoaxis, which is the main reason for the high photocatalytic activity of RGO/ potassium niobate nanoaxis. A core-shell structure photocatalyst of reduced graphene / potassium niobate composite microspheres was prepared by mixing graphene oxide and potassium niobate microspheres at room temperature. The composition, morphology and electron transfer of the products were studied by means of XRD,SEM, solid-state UV-Vis diffuse reflectance spectroscopy, fluorescence spectra and AC impedance spectroscopy. Because the reduced graphene oxide acts as a co-catalyst, it can transfer photogenerated electrons in time, thus avoiding the recombination with the hole, so, The redox graphene / potassium niobate composite microspheres exhibit higher hydrogen production activity under UV irradiation than pure potassium niobate microspheres and P25 TiO2. In addition, the stability of hydrogen production by reducing water with graphene oxide and potassium niobate composite microspheres under UV irradiation was studied. The redox graphene / potassium niobate composite microspheres had almost no change in hydrogen production activity after six cycles, which indicated that the reduced graphene / potassium niobate composite microspheres were cheap, easy to obtain and high in photocatalytic hydrogen production. A stable photocatalyst. A structured and ordered potassium niobate / silver oxide composite film was prepared by layer-by-layer self-assembly technique and UV in-situ reduction method. The composition, crystallinity and morphology of the composite films were characterized by XRD,SEM,XPS. The determination of low concentration crystal violet was studied by surface-enhanced Raman scattering with potassium niobate / nano-silver oxide composite film as active substrate. The results show that the potassium niobate nanochip / nano-silver oxide composite film can be used to detect crystal violet with low concentration quickly and efficiently. The rapid electron transfer between nano-silver oxide and potassium niobate nanoparticles in the composite film is the key to the detection of low concentration crystal violet.
【學位授予單位】:上海應用技術學院
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:O643.36;TQ116.2
【相似文獻】
相關期刊論文 前10條
1 王文山,鄒群,耿兆華;感應加熱提拉法鈮酸鉀晶體生長過程中賦色的研究[J];硅酸鹽學報;1987年04期
2 王世平;苗鴻雁;談國強;;鈮酸鉀粉體水熱法制備的工藝研究[J];無機鹽工業(yè);2007年03期
3 趙德明;牟慶平;欒波;;鈮酸鉀的合成、表征及性能研究[J];化工技術與開發(fā);2012年03期
4 丁盛平,黃仲臧,沈嘉祺,殷文之;鈮酸鉀半導瓷的燒結(jié)及其電性能[J];無機材料學報;1989年01期
5 王繼揚,岳書斌,劉耀崗,李麗霞,魏景謙;鉭鈮酸鉀晶體相結(jié)構(gòu)和相變的研究[J];無機材料學報;1989年03期
6 張道范,宋有庭,季陽陽,劉宏斌,吳星,牛小娟,朱鏞;鈮酸鉀鋰單晶的生長及介電性能[J];人工晶體學報;1997年Z1期
7 程振祥,張樹君,陳煥矗,張沛霖,鐘維烈;摻鎂鈮酸鉀鋰晶體的生長與介電特性[J];功能材料;2001年04期
8 趙致如;張帆;;鈮酸鉀織構(gòu)陶瓷用模板粉體的制備[J];當代化工;2011年03期
9 趙德明;牟慶平;欒波;;鈮酸鉀粉體的固相法制備研究[J];化學工業(yè)與工程技術;2012年05期
10 李月明;劉志;沈宗洋;王竹梅;洪燕;謝俊;;反應制度對兩步熔鹽法制備鈮酸鉀鈉粉體形貌的影響[J];稀有金屬材料與工程;2013年S1期
相關會議論文 前5條
1 田浩;都研;姚博;周忠祥;;鉭鈮酸鉀鈉單晶電光性能的臨界特性研究[A];中國晶體學會第五屆全國會員代表大會暨學術大會(晶體生長分會場)論文摘要集[C];2012年
2 曹洋;朱孔軍;裘進浩;龐旭明;顧洪匯;鄭紅娟;;鈮酸鉀鈉無鉛壓電陶瓷薄膜的制備方法研究[A];2010年海峽兩岸功能性復合材料論壇論文集[C];2010年
3 褚祥誠;高仁龍;郇宇;王曉慧;李龍土;;Li、Sb、Ta共摻雜對鈮酸鉀鈉基無鉛壓電陶瓷相結(jié)構(gòu)和壓電介電性能的影響[A];第十七屆全國高技術陶瓷學術年會摘要集[C];2012年
4 劉波;畢建聰;鄭威;徐玉恒;;雙摻鈰錳鈮酸鉀鋰晶體的生長及光折變性能的研究[A];第五屆中國功能材料及其應用學術會議論文集Ⅰ[C];2004年
5 陳俊;公衍生;王傳彬;沈強;張聯(lián)盟;;聚合物前驅(qū)體法制備鈮酸鉀鋰粉體的研究[A];第六屆中國功能材料及其應用學術會議論文集(2)[C];2007年
相關博士學位論文 前1條
1 李均;無鉛鉭鈮酸鉀鋰晶體的介電和壓電性能研究[D];哈爾濱工業(yè)大學;2013年
相關碩士學位論文 前10條
1 洪振;不同形貌鈮酸鉀功能組裝體的制備及其性能研究[D];上海應用技術學院;2015年
2 孟祥達;正交相鉭鈮酸鉀鈉單晶的生長及壓電特性研究[D];哈爾濱工業(yè)大學;2015年
3 吳憂;基于鉭鈮酸鉀晶體的電控光束偏轉(zhuǎn)特性研究[D];哈爾濱工業(yè)大學;2014年
4 李楊;鉭鈮酸鉀鋰晶體載流子遷移性能研究[D];哈爾濱工業(yè)大學;2009年
5 余遵雄;鈮酸鉀鈉壓電陶瓷的制備及其生物學性能研究[D];華南理工大學;2014年
6 張婷婷;鈮酸鉀微米方塊光催化裂解水制氫的實驗和理論研究[D];東北大學;2013年
7 王利峰;鈦酸鹽摻雜鈮酸鉀鈉陶瓷的制備與電性能[D];華北電力大學;2012年
8 葛娜;Pr摻雜鈮酸鉀和鈮酸鉀鈉的水熱法制備及其光致發(fā)光特性研究[D];哈爾濱工業(yè)大學;2014年
9 林慧;鈮酸鉀鈉/聚酰亞胺復合薄膜的電致發(fā)光研究[D];哈爾濱理工大學;2015年
10 劉永勤;過量鈉的鈮酸鉀鈉無鉛壓電陶瓷的結(jié)構(gòu)和性能的研究[D];上海師范大學;2011年
,本文編號:2267697
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2267697.html