天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 化學(xué)工程論文 >

SPS快速燒結(jié)制備含鉍玻璃及其性能研究

發(fā)布時(shí)間:2018-08-27 11:38
【摘要】:鉍離子摻雜玻璃自發(fā)現(xiàn)具有超寬帶近紅外發(fā)光性能以來受到了科研人員的廣泛關(guān)注,它很有可能制成超寬帶光纖放大器以解決現(xiàn)有稀土摻雜光纖放大器增益帶寬不足的問題,從而實(shí)現(xiàn)光纖通信的超大容量傳輸。目前對于鉍離子摻雜玻璃的研究主要集中在提高其發(fā)光性能和探討其發(fā)光機(jī)理等問題上,而摻鉍玻璃的制備方法是影響其性能的一個(gè)重要因素之一。鉍離子摻雜玻璃的制備多采用高溫熔融法,這種方法存在著熔融溫度高、熔融時(shí)間長等缺點(diǎn),這對于制備鉍離子這種易揮發(fā)離子的摻雜玻璃來說十分不利。為此,我們提出采用新型的玻璃制備工藝來制備鉍離子摻雜玻璃。本文采用多孔材料結(jié)合新型的放電等離子體燒結(jié)(Spark Plasma Sintering,SPS)技術(shù)制備摻鉍玻璃。多孔材料因其具有大的比表面積而具有較高的燒結(jié)活性,和普通粉體材料相比它更容易燒結(jié)。放電等離子體燒結(jié)技術(shù)具有升溫速度快、燒結(jié)時(shí)間短、燒結(jié)過程中可以加壓等優(yōu)點(diǎn)。我們將多孔材料和SPS技術(shù)有機(jī)的結(jié)合在一起成功的探索出了一條低溫快速制備透明石英玻璃的新方法。這一低溫快速的制備方法對于鉍離子摻雜玻璃的制備十分有利。本工作首先通過微孔材料zsm-5燒結(jié)制備樣品的透明與不透明的轉(zhuǎn)變過程研究了不導(dǎo)電材料在sps燒結(jié)過程中的溫度分布,并采用ansys熱分析軟件對燒結(jié)過程中的溫度分布進(jìn)行了模擬。二是以zsm-5和介孔材料sba-15為原料采用sps制備了石英玻璃。通過改變zsm-5粉體的燒結(jié)參數(shù),系統(tǒng)地研究了沸石分子篩zsm-5由有序結(jié)構(gòu)變成無序結(jié)構(gòu)的過程;通過拉曼光譜、紅外光譜以及同步輻射等測試技術(shù)分析了在有序無序轉(zhuǎn)變過程中zsm-5沸石分子篩結(jié)構(gòu)的變化,并研究了這些結(jié)構(gòu)變化對于樣品透過率、發(fā)光性能以及力學(xué)性能的影響。探索了sps燒結(jié)介孔材料sba-15制備石英玻璃樣品的燒結(jié)過程,并對燒結(jié)樣品的性能進(jìn)行了研究。三是通過等體積浸漬法制備了不同濃度鉍鋁共摻雜的zsm-5粉體,采用sps技術(shù)對粉體進(jìn)行燒結(jié)得到鉍離子摻雜zsm-5玻璃。系統(tǒng)地研究了鉍離子和鋁離子濃度對于摻鉍玻璃發(fā)光性能的影響,考察了不同激發(fā)波長對于樣品近紅外發(fā)光性能的影響,并結(jié)合實(shí)驗(yàn)現(xiàn)象和相關(guān)實(shí)驗(yàn)結(jié)果對鉍離子的近紅外發(fā)光機(jī)理進(jìn)行了探討。四是采用不同的粉體制備工藝制備出了鉍離子單摻或鉍鋁共摻的sba-15粉體,然后采用sps技術(shù)對粉體進(jìn)行燒結(jié)得到鉍離子摻雜的sba-15玻璃。系統(tǒng)地研究了不同粉體制備工藝對于樣品顏色和發(fā)光性能的影響。本文得到的主要研究成果和結(jié)論如下:(1)利用沸石分子篩zsm-5燒結(jié)制備樣品的透明與不透明的轉(zhuǎn)變過程研究了不導(dǎo)電材料在sps燒結(jié)過程中的溫度分布,研究發(fā)現(xiàn)樣品在徑向和軸向上都存在溫度梯度。1325℃燒結(jié)制備的樣品出現(xiàn)了中間透明邊緣不透明的現(xiàn)象,說明樣品存在徑向的溫度梯度,ansys熱分析軟件模擬結(jié)果表明樣品中心溫度比邊緣溫度高26℃;1315℃燒結(jié)制備的樣品出現(xiàn)了上表面透明部分大于下表面的現(xiàn)象,說明樣品存在軸向的溫度梯度,ansys熱分析軟件模擬結(jié)果表明樣品上表面的溫度比下表面高5℃。(2)采用sps技術(shù)對微孔分子篩zsm-5和介孔材料sba-15進(jìn)行燒結(jié),實(shí)驗(yàn)表明兩種粉體都能成功制備出透明的玻璃樣品。對zsm-5粉體燒結(jié)的一系列樣品的研究表明:樣品的透過率隨燒結(jié)溫度的升高是逐漸增大的,1300℃燒結(jié)制備的樣品在250~1700nm范圍內(nèi)的透過率小于5%,當(dāng)樣品的燒結(jié)溫度達(dá)到1350℃以上時(shí),樣品完全透明透過率達(dá)到最大值,在近紅外區(qū)(780~1700nm)的透過率在80%以上,在紫外-可見光區(qū)(250~780nm)的透過率也能達(dá)到60%以上,但在300nm處出現(xiàn)了一個(gè)吸收峰;樣品的發(fā)光則相反,隨著燒結(jié)溫度的升高樣品的發(fā)光強(qiáng)度逐漸降低;采用同步輻射x射線衍射和透射電鏡的測試結(jié)果都表明即使在完全透明的樣品中仍存在著少量的未完全坍塌的zsm-5,從而產(chǎn)生了缺陷,造成了樣品的吸收和發(fā)光。對sba-15粉體燒結(jié)的樣品進(jìn)行研究,發(fā)現(xiàn)在1050℃就能夠獲得完全透明的樣品。樣品在可見紫外區(qū)的透過率均能夠達(dá)到近90%,這一透過率值和傳統(tǒng)熔融法制備的石英玻璃基本相當(dāng),要好于zsm-5燒結(jié)制備的玻璃樣品,也明顯好于sps燒結(jié)納米二氧化硅和無定形二氧化硅制備的玻璃樣品。(3)采用sps燒結(jié)摻鉍zsm-5粉體成功制備出了摻鉍玻璃,制備出的鉍離子摻雜玻璃具有良好的近紅外發(fā)光性能。鉍離子摻雜濃度對于sps燒結(jié)制備的摻鉍玻璃發(fā)光性能的影響是十分復(fù)雜的,含鋁量少時(shí),采用500和700nm的光激發(fā)都能夠得到較強(qiáng)的近紅外熒光發(fā)射,但800nm的光激發(fā)無法得到近紅外發(fā)射;含鋁量較多時(shí),樣品采用500、700和800nm的光激發(fā)都能夠得到近紅外的熒光發(fā)射,但發(fā)光強(qiáng)度的變化規(guī)律是不同的,采用500、700nm的光激發(fā)產(chǎn)生的近紅外光的發(fā)光強(qiáng)度變化是一致的,而800nm激發(fā)產(chǎn)生的近紅外光的發(fā)光強(qiáng)度變化和它們不同。鋁離子對于鉍離子摻雜玻璃的性能具有十分大的影響,樣品的顏色會隨著鋁離子濃度的增加而加深;鋁離子含量在一定范圍內(nèi)的提高會增強(qiáng)500、700、800nm激發(fā)產(chǎn)生的近紅外發(fā)光的發(fā)光強(qiáng)度,但鋁離子的含量是不同的,500、700nm在鉍鋁比為1:3時(shí)就達(dá)到了最大值,而800nm在鉍鋁比為1:9時(shí)才達(dá)到最大值。有趣的是我們研究激發(fā)波長的影響時(shí)發(fā)現(xiàn)采用600nm的光激發(fā)摻鉍玻璃能夠產(chǎn)生熒光半高寬為273nm、發(fā)光峰位置為1207nm的近紅外發(fā)光,而且其發(fā)光強(qiáng)度要好于800nm激發(fā)產(chǎn)生的近紅外光。通過對實(shí)驗(yàn)現(xiàn)象和結(jié)果的分析我們認(rèn)為摻鉍玻璃在~1140nm處的發(fā)光是由于bi+的3p1→3p0的能級躍遷產(chǎn)生的,在~1240nm處的發(fā)光來自于bi0的2d3/2→4s3/2的能級躍遷,在~1440nm處的發(fā)光可以歸結(jié)為(bi2)2-的→3Π2g的能級躍遷。(4)采用不同的粉體制備工藝制備了鉍離子單摻雜的sba-15粉體和鉍鋁共摻雜的sba-15粉體,然后采用sps技術(shù)對粉體進(jìn)行燒結(jié)得到了摻鉍玻璃。鉍離子單摻sba-15粉體制備的摻鉍玻璃在500、700和800nm的光激發(fā)下并沒有表現(xiàn)出近紅外發(fā)光性能,說明鋁離子等修飾劑對于摻鉍玻璃的近紅外發(fā)光性能是必不可少的。采用等體積浸漬法制備的鉍鋁共摻雜粉體燒結(jié)后樣品呈現(xiàn)出灰黑色,且隨著濃度的增加顏色逐漸加深,采用500、700nm的光激發(fā)樣品可以產(chǎn)生近紅外光,但800nm的光激發(fā)并沒有發(fā)現(xiàn)很明顯的發(fā)射現(xiàn)象。采用原位合成稀釋球磨制備的低濃度樣品的顏色和發(fā)光性能與等體積浸漬法制備樣品的顏色和性能基本一致。采用水熱法合成的鉍鋁共摻雜粉體制備的樣品在摻雜濃度為0.10mol%時(shí),樣品的顏色呈現(xiàn)出灰黑色,XRD表明樣品中出現(xiàn)了鉍金屬,而當(dāng)摻雜濃度大于0.30mol%時(shí)樣品呈現(xiàn)出紅色,且隨著鉍離子濃度的增加顏色逐漸加深,熒光性能測試表明紅色的樣品在500、700或800nm的光激發(fā)下都能夠產(chǎn)生強(qiáng)的熒光發(fā)射,而灰黑色樣品的發(fā)光性能很差,800nm的光激發(fā)時(shí)幾乎沒有熒光發(fā)射。采用不同的激發(fā)波長對0.90mol%的樣品進(jìn)行測試發(fā)現(xiàn)大部分發(fā)光峰的峰值與ZSM-5制備的樣品相比都有一定程度的紅移,而且熒光半高寬變得更加的均勻,大多集中在230、240nm。對于低濃度SBA-15體系摻鉍樣品變成灰黑色的原因我們認(rèn)為可能是鉍氧化物的熱分解作用、SBA-15表面的硅羥基或者粉體的燒結(jié)機(jī)理等因素造成的,也可能是這些因素共同作用的結(jié)果。
[Abstract]:Bismuth ion-doped glass has attracted much attention of researchers since it was found to have ultra-wideband near-infrared luminescence properties. It is possible to make ultra-wideband fiber amplifiers to solve the problem of insufficient gain bandwidth of existing rare earth-doped fiber amplifiers, so as to realize ultra-large capacity transmission of optical fiber communications. The research of glass is mainly focused on improving its luminescent properties and discussing its luminescent mechanism. The preparation method of bismuth-doped glass is one of the important factors affecting its properties. Bismuth-doped glasses are very disadvantageous for the volatile ion-doped glasses. Therefore, we propose a new glass preparation process to prepare Bismuth-doped glasses. In this paper, the porous materials combined with a new spark plasma sintering (SPS) technology are used to prepare Bismuth-doped glasses. Porous materials have a large specific surface area. The spark plasma sintering technology has the advantages of rapid heating, short sintering time and pressure during sintering process. We have successfully combined the porous materials and SPS technology to explore a rapid preparation of transparent quartz at low temperature. A new method for preparing bismuth ion-doped glass at low temperature and high speed is proposed. The temperature distribution of non-conductive materials during SPS sintering is studied by the transparent and opaque transition process of samples prepared by sintering microporous material zsm-5. The sintering process is analyzed by using ANSYS thermal analysis software. Temperature distribution in Zsm-5 was simulated. Secondly, quartz glass was prepared from ZSM-5 and mesoporous material SBA-15 by sps. By changing the sintering parameters of ZSM-5 powder, the process of zeolite zeolite ZSM-5 from ordered structure to disordered structure was systematically studied. Raman spectroscopy, infrared spectroscopy and synchrotron radiation were used to analyze the process. The structural changes of zeolite ZSM-5 during ordered disorder transformation were studied. The effects of these structural changes on the transmittance, luminescence and mechanical properties of the samples were investigated. The sintering process of mesoporous material SBA-15 was explored and the properties of the sintered samples were studied. Bismuth-doped ZSM-5 glasses were prepared by deposition impregnation method. Bismuth-doped ZSM-5 glasses were sintered by SPS technique. The effects of Bismuth ion and Al ion concentration on the luminescent properties of Bismuth-doped glasses were studied systematically. The influence of excitation wavelength on the Near-infrared Luminescent Properties of samples was investigated. The mechanism of near infrared luminescence of bismuth ion was discussed by experimental phenomena and correlative experimental results. Fourthly, different powder preparation techniques were used to prepare bismuth ion mono-doped or bismuth-aluminum co-doped SBA-15 powders. Then bismuth ion-doped SBA-15 glass was obtained by SPS technique. The main research results and conclusions are as follows: (1) the temperature distribution of non-conductive materials during SPS sintering was studied by using the transparent and opaque transition process of the samples prepared by zeolite ZSM-5 sintering, and the temperature gradients were found in both radial and axial directions. The results of ANSYS thermal analysis software simulation show that the center temperature of the sample is 26 degrees higher than the edge temperature; the transparent part of the upper surface is larger than the lower surface of the sample sintered at 1315 degrees Celsius, indicating that the sample has a radial temperature gradient. The results of ANSYS thermal analysis software simulation show that the temperature of the upper surface of the sample is higher than that of the lower surface by 5 (?) The transmittance of the sample increases gradually with the sintering temperature. The transmittance of the sample sintered at 1300 C is less than 5% in the range of 250 ~ 1700 nm. When the sintering temperature of the sample is above 1350 C, the transmittance of the sample reaches the maximum value. The transmittance in the near infrared region (780 ~ 1700 nm) is above 80%, and in the ultraviolet - visible region (25 - 1700 nm). The transmittance of 0~780 nm can reach over 60%, but an absorption peak appears at 300 nm. On the contrary, the luminescence intensity of the samples decreases with the increase of sintering temperature. The results of synchrotron radiation X-ray diffraction and transmission electron microscopy show that there are still a small amount of unfinished samples even in completely transparent samples. The samples sintered by SBA-15 powder were found to be completely transparent at 1050 C. The transmittance of the samples in the visible-ultraviolet region reached nearly 90%, which was almost the same as that of the quartz glass prepared by traditional melting method. (3) Bismuth-doped glass was successfully prepared by using sps-sintered bismuth-doped ZSM-5 powder, and the prepared bismuth-doped glass has good near-infrared luminescence properties. The influence of Al content on the luminescent properties of bismuth-doped glasses is very complex. When Al content is small, the near-infrared fluorescence can be obtained by 500 nm and 700 nm photoexcitation, but the near-infrared fluorescence can not be obtained by 800 nm photoexcitation. When Al content is high, the samples can be excited by 500,700 and 800 nm photoexcitation to obtain near-infrared fluorescence. The luminous intensity of the near infrared light excited by 500,700 nm is the same, but the luminous intensity of the near infrared light excited by 800 nm is different from them. Increasing the concentration of Al ions in a certain range will enhance the near-infrared luminescence intensity produced by 500,700,800 nm excitation, but the content of Al ions is different. 500,700 nm reaches the maximum when the ratio of Bi to Al is 1:3, and 800 nm reaches the maximum when the ratio of Bi to Al is 1:9. When the excitation wavelength is changed, it is found that the near-infrared luminescence can be produced by using 600 nm light to excite the bismuth-doped glass with a half-width of 273 nm and a peak position of 1207 nm, and the luminescence intensity is better than that of 800 nm light. The luminescence at ~1240 nm comes from the 2d_3/2 4s_3/2 energy level transition of Bi + at 3p_1 3p_0. The luminescence at ~1440 nm can be attributed to the 3 2G energy level transition of 2 of 2 of 2 of 2 of 2 of 2 of 3 2 of 2 of 2 of 2 of 2 of 2 of Bismuth-doped glass was obtained by SPS technique. Bismuth-doped glass prepared by SBA-15 powder doped with Bismuth ion did not exhibit Near-infrared Luminescent Properties under 500,700 and 800 nm light excitation, indicating that aluminum ion modifier is essential for Near-infrared Luminescent Properties of Bismuth-doped glass. Bismuth-doped glass was prepared by isovolumetric impregnation method. The samples sintered by bismuth-aluminium co-doped powders show gray-black color, and the color gradually deepens with the increase of concentration. The samples excited by 500,700 nm light can produce near-infrared light, but there is no obvious emission at 800 nm. The color and luminescent properties of low concentration samples prepared by in-situ synthesis dilution ball milling The color and properties of the samples prepared by hydrothermal method are basically the same as those prepared by isovolumetric impregnation method. When the doping concentration is 0.10mol%, the color of the samples is gray-black. XRD shows that there is bismuth metal in the samples, but when the doping concentration is more than 0.30mol%, the samples show red, and with the separation of bismuth. The fluorescence properties of the samples with different excitation wavelengths of 0.90 mol% showed that most of the samples with different excitation wavelengths produced strong fluorescence emission. The peak value of the distribution peak has a certain red shift compared with the sample prepared by ZSM-5, and the fluorescence half-width becomes more uniform, mostly concentrated at 230,240 nm. The sintering mechanism and other factors may also be the result of these factors.
【學(xué)位授予單位】:東華大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TQ171.1

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 曾立英;冷壓燒結(jié)制備高密度粉末冶金零部件的新方法[J];稀有金屬快報(bào);2005年07期

2 邱鳴慧;馮君;范益群;徐南平;;雙層陶瓷膜共燒結(jié)制備過程中的應(yīng)力分析[J];無機(jī)材料學(xué)報(bào);2009年03期

3 肖玲;丁春華;孫巖樺;虞烈;;感應(yīng)燒結(jié)制備高溫自潤滑涂層及其性能研究[J];金屬學(xué)報(bào);2011年03期

4 李俊;熊惟皓;楊青青;李小峰;;超固相線液相燒結(jié)制備氧化物彌散強(qiáng)化鎳基高溫合金[J];機(jī)械工程材料;2011年09期

5 趙媛;王連軍;張國軍;陳立東;江莞;;SPS快速反應(yīng)燒結(jié)制備ZrB_2-SiC復(fù)合材料及其過程研究[J];稀有金屬材料與工程;2007年S1期

6 葉飛;潘麗吉;劉亞;郭露村;;反應(yīng)燒結(jié)制備輕質(zhì)高強(qiáng)Si_3N_4/SiC材料[J];陶瓷學(xué)報(bào);2012年04期

7 高家誠,周敬恩,劉建新;反應(yīng)燒結(jié)制備CF/Si_3N_4復(fù)合材料的研究[J];兵器材料科學(xué)與工程;1989年11期

8 慈戩;蔣毅堅(jiān);;激光燒結(jié)制備鈮酸鋰陶瓷研究[J];光電子.激光;2008年05期

9 梁寶巖;王明智;;反應(yīng)燒結(jié)制備Ti_2AlN-TiN復(fù)合材料[J];燕山大學(xué)學(xué)報(bào);2010年03期

10 郝斌;劉劍;劉進(jìn)強(qiáng);王福;;微波燒結(jié)制備碳化硅的影響因素[J];材料熱處理學(xué)報(bào);2013年S1期

相關(guān)會議論文 前7條

1 葉飛;劉亞;陳涵;郭露村;;反應(yīng)燒結(jié)制備輕質(zhì)高強(qiáng)Si_3N_4/SiC材料[A];第十七屆全國高技術(shù)陶瓷學(xué)術(shù)年會摘要集[C];2012年

2 裴燕斌;果世駒;孟飛;楊霞;;鎢-鈷-納米碳管反應(yīng)燒結(jié)制備高度取向的硬質(zhì)合金[A];第五屆海峽兩岸粉末冶金技術(shù)研討會論文集[C];2004年

3 丁玉生;董紹明;黃政仁;江東亮;;熱壓燒結(jié)制備短SiC/SiC復(fù)合材料[A];2004年中國材料研討會論文摘要集[C];2004年

4 李玉平;胡連喜;吳成;王爾德;;機(jī)械力歧化-真空燒結(jié)制備納米晶Nd-Fe-B磁體研究[A];2009全國粉末冶金學(xué)術(shù)會議論文集[C];2009年

5 楊彩;王富恥;馬壯;;SPS燒結(jié)制備LaTiO_3過程中的相轉(zhuǎn)變[A];第十七屆全國高技術(shù)陶瓷學(xué)術(shù)年會摘要集[C];2012年

6 馮魯興;薛濟(jì)來;董辰;高院玲;朱駿;;粉末燒結(jié)制備多孔鎳鈦合金顯微孔隙特征的研究[A];有色金屬工業(yè)科學(xué)發(fā)展——中國有色金屬學(xué)會第八屆學(xué)術(shù)年會論文集[C];2010年

7 張飛鵬;路清梅;張忻;張久興;;SPS燒結(jié)制備Ag_xCa_(3-x)Co_4O_9熱電氧化物及其電性能[A];第六屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集(4)[C];2007年

相關(guān)博士學(xué)位論文 前2條

1 顧士甲;SPS快速燒結(jié)制備含鉍玻璃及其性能研究[D];東華大學(xué);2016年

2 蘇華枝;TiO_2光催化陶瓷的高溫?zé)Y(jié)制備及性能研究[D];華南理工大學(xué);2013年

相關(guān)碩士學(xué)位論文 前6條

1 范安平;Cr/C為7.2的高鉻鑄鐵的燒結(jié)制備和組織性能研究[D];湖南大學(xué);2013年

2 姚亞光;新型雙尺度結(jié)構(gòu)鈦合金的半固態(tài)燒結(jié)制備及其強(qiáng)韌化機(jī)理[D];華南理工大學(xué);2016年

3 袁晉;反應(yīng)燒結(jié)制備Si_3N_4基復(fù)合材料[D];南京理工大學(xué);2004年

4 李開雄;熔滲燒結(jié)制備Ti_3SiC_2及其摩擦磨損性能的研究[D];西安理工大學(xué);2009年

5 馬志強(qiáng);兩步法反應(yīng)燒結(jié)制備鈦化物陶瓷復(fù)合材料[D];東華大學(xué);2012年

6 梁蘇瑩;熱壓燒結(jié)制備Ti_2AlN陶瓷及其結(jié)構(gòu)性能研究[D];燕山大學(xué);2010年

,

本文編號:2207157

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2207157.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶0d184***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com
熟女少妇久久一区二区三区| 久久国产人妻一区二区免费| 国产精品一区二区视频大全| 国产精品一区二区成人在线| 国产精品一区二区日韩新区| 国产高清一区二区不卡| 内用黄老外示儒术出处| 日本欧美一区二区三区在线播| 亚洲一区二区三区日韩91| 国产av熟女一区二区三区蜜桃| 国产av一区二区三区久久不卡| 日本和亚洲的香蕉视频| 国产女性精品一区二区三区| 日韩精品在线观看完整版| 国产又色又爽又黄又免费| 麻豆印象传媒在线观看| 在线观看视频日韩精品| 午夜亚洲精品理论片在线观看| 国产又大又硬又粗又湿| 儿媳妇的诱惑中文字幕| 免费一区二区三区少妇| 欧美亚洲国产日韩一区二区| 日韩成人动作片在线观看| 亚洲最新一区二区三区| 成人国产一区二区三区精品麻豆 | 色丁香之五月婷婷开心| 日韩欧美一区二区不卡看片| 激情爱爱一区二区三区| 国产精品不卡一区二区三区四区 | 国产伦精品一区二区三区高清版| 日本高清中文精品在线不卡| 日韩精品免费一区三区| 国产精品香蕉一级免费| 午夜视频在线观看日韩| 国产日韩综合一区在线观看| 国产一区二区三区四区免费| 亚洲中文在线观看小视频| 又黄又爽禁片视频在线观看| 在线视频三区日本精品| 国产精品午夜性色视频| 99久久精品免费看国产高清|