紐帶管內(nèi)流體強化換熱及抗垢特性研究
[Abstract]:As a kind of high efficiency heat transfer spoiler, tie is widely used in the fields of chemical equipment, such as enhanced heat transfer, scale prevention, fluid mixing and so on. Scholars at home and abroad have carried out a lot of research on fluid flow and enhanced heat transfer in the inner tube, but the enhanced heat transfer performance of the tie still needs to be further improved. In this paper, a trilateral tie is developed and simulated by Fluent 15.0, aiming at the problems of less flow conditions, poor comprehensive heat transfer enhancement and structural optimization of the tie tube. The characteristics of heat transfer and resistance in the tube under turbulent (Re=5000~30000) and laminar flow (Re=400~1500) conditions are compared with those of the circular tube. The results show that the comprehensive performance of the triangular-tie tube is better than that of the circular tube. Furthermore, the structural parameters of the tie tube are optimized from the following aspects: the number of the tie edges n, the torsion ratio yand the length m. Finally, the anti-fouling performance of the circular tube and the tie tube is simulated and analyzed. The conclusions are as follows: the numerical simulation results show that, The inner tie tube can make the fluid produce spiral flow, induce the fluid to produce radial and tangential flow away from the axis, and thus aggravate the mixing of the near wall fluid with the mainstream fluid, and reduce the velocity and temperature boundary layer of the fluid. The heat transfer from the tube wall to the fluid in the tube increases the convection heat transfer coefficient of the fluid in the tube wall. The simulation results under turbulent conditions show that the Nu of the triangulated tie tube is larger, the heat transfer performance of the grid tie tube and the ordinary tie tube is equivalent to that of the Nu, and the resistance coefficient f of the tie tube is in order from high to low: the grid tie, the trilateral tie and the ordinary tie. The comprehensive performance evaluation factor 畏 of trilateral tie tube is higher than that of other tie tubes. The optimization results of the structural parameters of the tie tube show that Nu and f increase with the increase of the number and length of the tie edges, and decrease with the increase of the torsion ratio. The torsion ratio is 2.0 and the side length m=9mm trilateral tie tube has better comprehensive performance, and the comprehensive performance evaluation factor 畏 1.33 is higher than that of circular tube and ordinary tie tube by 11.9and 33.2and 5.475.98, respectively. The simulation results under laminar flow condition show that the more Nu and f increase with the increase of the number of edges and the length of the edges, and the decrease with the increase of torsion ratio, the simulation results show that the comprehensive performance of the trilateral tie tube with yyong 2.0mm is better than that of the tube with 9mm. The comprehensive performance evaluation factor 畏 is 4.96. The study on the anti-fouling performance of the circular pipe and the tie tube shows that the spiral flow of the fluid in the tie tube scour the wall of the pipe, which makes the fouling distribution of Ca Co3 particles more uniform, and it is not easy to deposit in the heat transfer pipe, and its anti-fouling performance is obviously better than that of the circular tube. The calculated non-uniform coefficient of particle fouling of round tube, common tie tube and trilateral tie tube is (CV) of 8.72and 3.71and 3.22 respectively. The smaller the non-uniformity coefficient is, the better the anti-fouling performance of tie tube is. By comparing the characteristics of fouling distribution between 5um 10um and 20um particles, it is concluded that the diameter of fouling particles affects the anti-fouling performance of heat transfer tubes. The larger the particle diameter is, the easier the heat exchanger tube is to scale in the range of the studied particle diameter.
【學(xué)位授予單位】:鄭州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TQ055.81
【相似文獻】
相關(guān)期刊論文 前10條
1 殷立勇;張潤來;;一種新型強化換熱結(jié)構(gòu)[J];化學(xué)工程與裝備;2010年12期
2 胡梟;夏德宏;任玲;郭美榮;;蜂巢式金屬擴展表面強化換熱插件的開發(fā)[J];中國有色冶金;2012年06期
3 霍喜軍;劉巨保;張強;;內(nèi)外流動介質(zhì)下強化換熱管耦合傳熱數(shù)值模擬[J];石油化工設(shè)備;2011年03期
4 J.Eftekhar ,宋建峰;石蠟貯熱系統(tǒng)中的強化換熱[J];糧油加工與食品機械;1985年12期
5 閆云飛;劉科;張力;;強化換熱凹槽管內(nèi)流動與傳熱數(shù)值模擬[J];化工進展;2010年12期
6 張俊濤,,周筠清;原理性渦旋強化換熱裝置的傳熱性能研究[J];冶金能源;1995年06期
7 王玉;王濤;;4種常用強化換熱管綜合性能研究綜述[J];管道技術(shù)與設(shè)備;2006年05期
8 張俊濤,周筠清;渦旋強化換熱裝置的換熱及流動阻力的實驗研究[J];河北理工學(xué)院學(xué)報;1995年03期
9 蘇靜;高宇恩;齊向紅;;凝汽器強化換熱防結(jié)垢技術(shù)的應(yīng)用[J];山東冶金;2010年05期
10 夏莉;張鵬;王如竹;;套管式相變儲能單元的強化換熱[J];化工學(xué)報;2011年S1期
相關(guān)會議論文 前6條
1 張同榮;歐陽新萍;姜帆;司少娟;;斜翅型冷凝強化換熱管傳熱性能的實驗研究[A];走中國創(chuàng)造之路——2011中國制冷學(xué)會學(xué)術(shù)年會論文集[C];2011年
2 賈臻;龔自力;邱金榮;;核級換熱器強化換熱方式對比與選擇[A];中國核科學(xué)技術(shù)進展報告——中國核學(xué)會2009年學(xué)術(shù)年會論文集(第一卷·第3冊)[C];2009年
3 陳建紅;歐陽新萍;熊高鵬;姜濤;薛娜;;幾種管外凝結(jié)強化管的傳熱試驗及分析[A];中國制冷學(xué)會2007學(xué)術(shù)年會論文集[C];2007年
4 陶國龍;;基于降壓核態(tài)沸騰相變一體化強化換熱技術(shù)的脫硫工藝節(jié)水節(jié)能方案[A];第十屆中國科協(xié)年會論文集(二)[C];2008年
5 祁小松;張華;武俊梅;;縱向渦發(fā)生器強化傳熱的研究歷程及進展[A];中國制冷學(xué)會2009年學(xué)術(shù)年會論文集[C];2009年
6 祁小松;張華;武俊梅;;縱向渦發(fā)生器的強化傳熱作用與研究進展[A];上海市制冷學(xué)會2009年學(xué)術(shù)年會論文集[C];2009年
相關(guān)博士學(xué)位論文 前5條
1 郭劍;管內(nèi)強化換熱的理論和實驗研究[D];華中科技大學(xué);2012年
2 孟繼安;基于場協(xié)同理論的縱向渦強化換熱技術(shù)及其應(yīng)用[D];清華大學(xué);2003年
3 司洪宇;液化天然氣冷能利用過程中強化換熱技術(shù)及水平管內(nèi)氣液兩相流體激振機理的研究[D];中國海洋大學(xué);2011年
4 陶于兵;CO_2家用空調(diào)系統(tǒng)實驗研究及換熱器強化換熱數(shù)值模擬[D];西安交通大學(xué);2008年
5 馬可;基于熱管技術(shù)的磨削弧區(qū)強化換熱基礎(chǔ)研究[D];南京航空航天大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 蔡楠;通道內(nèi)非對稱布置縱向渦發(fā)生器強化換熱分析[D];河北工業(yè)大學(xué);2014年
2 李亞飛;紐帶管內(nèi)流體強化換熱及抗垢特性研究[D];鄭州大學(xué);2015年
3 賈寶光;新型內(nèi)肋強化換熱管綜合換熱性能的數(shù)值研究[D];鄭州大學(xué);2015年
4 王忠會;場協(xié)同理論指導(dǎo)下的強化換熱[D];華北電力大學(xué)(北京);2003年
5 李燕;凹槽通道中層流脈動流動強化換熱的實驗研究[D];大連理工大學(xué);2013年
6 馬良;偏心旋流管強化換熱的數(shù)值分析[D];華中科技大學(xué);2013年
7 許潔;以空氣為介質(zhì)的電場強化換熱理論與數(shù)值計算[D];東華大學(xué);2010年
8 楊炳昌;層流脈動流動強化換熱的實驗研究[D];大連理工大學(xué);2012年
9 馮知正;平直與柱面翼渦發(fā)生器沖孔強化換熱特性實驗研究[D];華北電力大學(xué);2013年
10 崔麗紅;螺旋折流板換熱器強化換熱管內(nèi)流動與傳熱特性的研究[D];西安建筑科技大學(xué);2013年
本文編號:2194503
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2194503.html