分散相相互作用下液—液水力旋流分離特性
[Abstract]:The liquid-liquid hydrocyclone separates the multiphase medium by the different centrifugal force due to the density difference in the mixed medium. In the numerical simulation of hydrocyclone, the diameter of dispersed droplet is often regarded as a constant value, so the influence of flow field on the diameter of dispersed droplet is ignored. In this paper, the separation characteristics of hydrocyclone are studied in view of the polymerization and rupture of dispersed droplets in the separation process. The main contents and conclusions are as follows: the flow field in the hydrocyclone, the droplet force in the dispersed phase, the fracture and polymerization mechanism of the dispersed phase are analyzed theoretically. It is concluded that the internal flow field of the hydrocyclone is mainly composed of the free vortex of the outer swirl and the forced vortex of the inner swirl. When the Weber number is greater than 12:00, the droplet is prone to rupture, and only when the collision contact time of the two colliding droplets exceeds the critical value, the droplet polymerization can occur. By comparing numerical simulation with experimental data, the polymerization and fracture kernel functions in liquid-liquid hydrocyclone with low concentration dispersion phase were optimized. At the same time, the distribution of flow field, velocity field, concentration of dispersed phase, fracture and polymerization region of dispersed phase in liquid-liquid cyclone are analyzed. The results show that the polymerization and rupture kernel functions proposed by the President Lerh are more suitable for the simulation of hydrocyclone with low concentration dispersion phase than other functions, and the error is close to that of the experimental results. The distributions of velocity and turbulence intensity in each direction are consistent with the theoretical analysis in the form of combined vortex. The volume fraction and source term of the dispersed phase in the hydrocyclone are analyzed, and the flow field and the dispersed phase distribution in the hydrocyclone under different inlet flow rates are compared. The results show that the polymerization rate of the dispersed phase increases with the increase of the concentration of the dispersed phase, and the fracture rate increases with the increase of the turbulence intensity and the velocity gradient. With the increase of inlet flow rate, the velocity and turbulence intensity increase simultaneously, and the concentration of dispersed phase increases at the lower end of cylinder, big cone and small cone. The increase of inlet flow rate promotes the fracture phenomenon, and with the increase of velocity, the increasing amplitude of fracture phenomenon decreases. A method for calculating the separation efficiency of liquid-liquid hydrocyclone with low concentration and light dispersion phase is derived, and the experimental results under different inlet flow rates and structures are compared respectively. The average error between the calculated value and the experimental value is 5. When the separation efficiency is lower than 10, the error increases with the decrease of the diameter of the dispersed phase. Because the interaction of dispersed phase is not taken into account in this formula, the accuracy of the formula is reduced when the droplet fracture of dispersed phase is obvious.
【學位授予單位】:武漢工程大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TQ051.8
【相似文獻】
相關(guān)期刊論文 前10條
1 柳姍;幸福堂;;氣-液分離器中液滴碰壁反彈系數(shù)的研究[J];礦業(yè)工程;2013年06期
2 裘祖榮,張國雄,王春海,李醒飛;液滴分析技術(shù)的研究[J];天津大學學報;2001年05期
3 陸軍軍;陳雪莉;曹顯奎;劉海峰;于遵宏;;液滴撞擊平板的鋪展特征[J];化學反應(yīng)工程與工藝;2007年06期
4 賀麗萍;夏振炎;姜楠;;低流量微管末端液滴形成及破碎的數(shù)值模擬[J];化工學報;2011年06期
5 李棟;陳振乾;;超聲波瞬間霧化結(jié)霜初始階段液滴的可視化[J];化工學報;2013年11期
6 巢守柏;范正;;振動篩板槽中液滴破碎凝聚動力學[J];化工冶金;1986年02期
7 巢守柏,范正;振動篩板槽中液滴分散動力學的研究(Ⅰ)實驗研究及理論分析[J];化工學報;1988年06期
8 江銘伯;對液滴表面張力的探討[J];齊齊哈爾輕工學院學報;1988年03期
9 王浩然,安震濤,楊傳芳,劉會洲;噴霧液滴與不混溶液的混合[J];化工冶金;1999年04期
10 邱龍會,魏蕓,傅依備,師韜,唐永建,鄭永銘,王勵生;液滴法制備空心玻璃微球中初始液滴的定量形成[J];高;瘜W工程學報;2001年03期
相關(guān)會議論文 前10條
1 賀麗萍;夏振炎;;低流量微管末端液滴形成及破碎的研究[A];第八屆全國實驗流體力學學術(shù)會議論文集[C];2010年
2 熊燃華;許明;李耀發(fā);楊基明;羅喜勝;于勇波;趙鐵柱;;液-液兩相介質(zhì)中液滴在沖擊作用下演變模式[A];第十四屆全國激波與激波管學術(shù)會議論文集(下冊)[C];2010年
3 左子文;王軍鋒;霍元平;謝立宇;胡維維;;氣流中荷電液滴演化的數(shù)值模擬[A];中國力學大會——2013論文摘要集[C];2013年
4 呂存景;;微尺度下的液滴黏附力學[A];慶祝中國力學學會成立50周年暨中國力學學會學術(shù)大會’2007論文摘要集(下)[C];2007年
5 劉華敏;劉趙淼;;液滴形成與下落過程分析[A];北京力學會第13屆學術(shù)年會論文集[C];2007年
6 鄭哲敏;;液滴與液面碰撞時發(fā)生環(huán)形穿入的條件[A];鄭哲敏文集[C];2004年
7 劉偉民;畢勤成;張林華;孟凡湃;薛梅;;液滴低壓閃蒸形態(tài)和溫度變化的研究[A];山東省暖通空調(diào)制冷2007年學術(shù)年會論文集[C];2007年
8 陳雪;朱志強;劉秋生;;固體表面液滴熱毛細遷移的實驗研究[A];中國力學大會——2013論文摘要集[C];2013年
9 郭加宏;胡雷;戴世強;;液滴沖擊固體表面液膜的實驗和數(shù)值研究[A];第九屆全國水動力學學術(shù)會議暨第二十二屆全國水動力學研討會論文集[C];2009年
10 処S怫,
本文編號:2163103
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2163103.html