基于陽(yáng)極生物膜分布調(diào)控的微流體微生物燃料電池傳輸機(jī)理及產(chǎn)電特性
[Abstract]:Microbial fuel cell (MFC) is a green energy technology which uses the metabolism of bacteria to efficiently deal with organic matter in sewage and directly convert it into electrical energy. In recent years, the volume of MFC has gradually reduced to the micro nano scale, which constitutes a microfluidic biofuel battery (MMFC). It is used as an electric equipment and on-line analysis and detection technique. Operation, in the field of environmental monitoring, bioanalysis and micro power supply, has a broad application and development prospect. It is one of the hot topics in the research of micro fluid energy technology. At the present stage, MMFC mainly reduces the proportion of large batteries, is limited by the distribution of the anode side biofilm, the high cost of the electric pool, the large battery internal resistance and the unit cost. At the same time, the flow and transmission phenomena involved in the battery have not been deeply studied. Especially, the film forming characteristics of the biofilm in the micro space under the flow condition have not been explained clearly. In view of the problems of the limited distribution of the biofilm and the low power of the electric pool, this paper from the Engineering Thermo Physics Based on the theory of fluid mechanics and mass transfer in the family, the transmission mechanism and production characteristics in MMFC are studied based on the distribution and regulation of the anode biofilm in the micro channel. The main contents are as follows: (1) the Y type MMFC with the inlet of the single anode liquid is constructed, and the operating parameters such as the concentration of anode liquid, the concentration of cathode liquid, the flow rate of the reaction liquid and so on are studied. The influence of pool performance was observed and the distribution of biofilm distribution along the direction of the anode side was observed. (2) the MMFC of different battery configurations was constructed. From the angle of alleviating the influence of the diffusion mixing region, the MMFC with the gradually diffused channel structure was constructed. The change of the channel junction was studied from the distribution of the biofilm, the internal resistance of the anode side, the battery production performance and so on. The effect of structure on the performance of the battery was constructed. From the angle of the boundary layer of the thin anode side, MMFC was constructed with the multi anode fluid inlet. The electric performance of the single anode liquid imported battery was compared. The mechanism of increasing the anode inlet on the battery production performance was analyzed by controlling the switch state of the anode liquid inlet. (3) a new method was constructed. A new type of three dimensional anode material based on nitrogen doped graphene aerogels was constructed based on the attachment and strengthening idea of a nitrogen doped graphene. The electrode was characterized from the material chemical and biochemical angles, and the electrode was attached to the biofilm, the anode charge migration and the battery production were studied. Based on the flow simplification idea, a kind of air self breathing micro fluid MFC under the control of single strand fluid was constructed. The physical and chemical properties and electrocatalytic properties of the synthesized catalyst were studied. The performance of the battery was tested under continuous and sequence batch conditions. The main results were as follows: 1) a type of Y type based on graphite electrode was constructed. With the increase of the fuel concentration of the anode inlet and the volume flow of the anode liquid, the performance of the cell MMFC increases first and then decreases. The maximum area power density of the output is 618 + 4 m Wm~ (-2) at the inlet fuel concentration of 1500 mgL~ (-1) and the anodic liquid flow rate of 10 m L H-1. It is found that the thickness of the biofilm formed by the producing bacteria gradually thins along the flow direction, that is, the thickness of the biofilm in the inlet section of the fluid is greater than the corresponding thickness of the full development section; 2) the MMFC based on the three microfluidic structures, which is based on the gradual expansion, parallel and shrinking, has successfully avoided the influence of the diffusion mixing zone and has a more compact overall. The biofilm distribution, at the same time, is the lowest resistance of MMFC based on the anodic side, the maximum area power density is 2447.7 + 38.9m Wm~ (-2), which is based on the 5.29 times of MMFC of the gradually shrinking channel (462.7 + 17.5 m Wm~ (-2)) and 1.24 times of MMFC (1980.1 + 27.5 m Wm~ (-2)) based on the parallel channel; 3) constructed based on the multi anode fluid. The imported MMFC (MMFC-MI), the biofilm is densely distributed along the flow direction in the microchannel, especially at the three equal spaced anodic fluid entrance, the distribution of the biofilm is far greater than that of the single import MMFC, and the maximum power density of the MMFC-MI is 85.6% under the closed state of the battery after the inoculation is completed. The main role of road inlet is reflected in the enrichment stage of producing electric bacteria, and the effect of enhanced transmission of anodic liquid after inoculation is relatively limited; 4) a biological anode material based on graphene aerogel (N-GA) is constructed. Its three-dimensional structure and nitrogen containing functional groups are beneficial to strengthen the attachment of electric bacteria to the inner and outer surfaces of the electrode; and doping nitrogen elements at the same time. The transfer resistance of electrons from the surface of the biofilm to the surface of the electrode was reduced; the volume power density of the micro MFC based on the N-GA bio anode was 225 + 12 Wm~ (-3) and 750 + 40 Wm~ (-3) (positive ratio to the anode volume); 5), a self breathing MMFC under the control of single strand fluid was constructed, and a synthetic one was synthesized at the same time. A nitrogen doped graphene aerogel - active carbon (AC@N-GA) oxygen reduction (ORR) catalyst, which contains rich functional groups, shows excellent ORR catalytic performance, the number of electron transfer is 3.92, the yield of H_2O_2 is only 4.5%, the maximum power density of MMFC continuous flow with AC@N-GA as catalyst is 1181.4 + 135.6 Wm~ (-3), under the precondition batch condition The maximum power density is 690.2 + 62.3 Wm~ (-3), and the electricity generation performance is 10 times higher than that of the international report MMFC under the same conditions.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TM911.45
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 連靜;馮雅麗;李浩然;杜竹瑋;;微生物燃料電池的研究進(jìn)展[J];過(guò)程工程學(xué)報(bào);2006年02期
2 連靜;馮雅麗;李浩然;劉志丹;周良;;直接微生物燃料電池的構(gòu)建及初步研究[J];過(guò)程工程學(xué)報(bào);2006年03期
3 關(guān)毅;張?chǎng)?;微生物燃料電池[J];化學(xué)進(jìn)展;2007年01期
4 洪義國(guó);郭俊;孫國(guó)萍;;產(chǎn)電微生物及微生物燃料電池最新研究進(jìn)展[J];微生物學(xué)報(bào);2007年01期
5 丁平;邵海波;劉光洲;段東霞;麻挺;陳嗣俊;王建明;張鑒清;;應(yīng)用需鹽脫硫弧菌的微生物燃料電池發(fā)電研究(英文)[J];電化學(xué);2007年02期
6 園丁;;微生物燃料電池:既處理污水又發(fā)電[J];污染防治技術(shù);2007年03期
7 劉登;劉均洪;劉海洲;;微生物燃料電池的研究進(jìn)展[J];化學(xué)工業(yè)與工程技術(shù);2007年05期
8 張廣柱;劉均洪;;微生物燃料電池研究和應(yīng)用方面的最新進(jìn)展[J];化學(xué)工業(yè)與工程技術(shù);2008年04期
9 孫健;胡勇有;;廢水處理新理念——微生物燃料電池技術(shù)研究進(jìn)展[J];工業(yè)用水與廢水;2008年01期
10 王萬(wàn)成;陶冠紅;;微生物燃料電池運(yùn)行條件的優(yōu)化[J];環(huán)境化學(xué);2008年04期
相關(guān)會(huì)議論文 前10條
1 顧忠澤;吳文果;;微生物燃料電池的研究[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第05分會(huì)場(chǎng)摘要集[C];2010年
2 趙峰;;來(lái)自廢水的能量-微生物燃料電池[A];2010年海峽兩岸環(huán)境與能源研討會(huì)摘要集[C];2010年
3 李正龍;劉紅;孔令才;韓梅;;可利用空間基地有機(jī)廢物的微生物燃料電池預(yù)研[A];中國(guó)空間科學(xué)學(xué)會(huì)第16屆空間生命學(xué)術(shù)研討會(huì)論文摘要集[C];2005年
4 孫健;;廢水處理新理念——微生物燃料電池技術(shù)研究進(jìn)展[A];節(jié)能環(huán)保 和諧發(fā)展——2007中國(guó)科協(xié)年會(huì)論文集(一)[C];2007年
5 趙峰;;微生物燃料電池的電子傳遞及電極反應(yīng)研究[A];廣東省科協(xié)資助學(xué)術(shù)會(huì)議總結(jié)材料[C];2010年
6 付玉彬;;海底微生物燃料電池研究和應(yīng)用[A];廣東省科協(xié)資助學(xué)術(shù)會(huì)議總結(jié)材料[C];2010年
7 孔曉英;李連華;李穎;楊改秀;孫永明;;葡萄糖濃度對(duì)微生物燃料電池產(chǎn)電性能的影響[A];廣東省科協(xié)資助學(xué)術(shù)會(huì)議總結(jié)材料[C];2010年
8 袁勇;莊莉;周順桂;;盤管式微生物燃料電池的構(gòu)建及其應(yīng)用[A];廣東省科協(xié)資助學(xué)術(shù)會(huì)議總結(jié)材料[C];2010年
9 喻玉立;袁用波;胡忠;;產(chǎn)電菌的選育及其在微生物燃料電池中的應(yīng)用[A];廣東省科協(xié)資助學(xué)術(shù)會(huì)議總結(jié)材料[C];2010年
10 陳禧;王煒;彭香琴;劉宇波;幸毅明;;微生物燃料電池結(jié)構(gòu)與材料研究進(jìn)展[A];2013中國(guó)環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第八卷)[C];2013年
相關(guān)重要報(bào)紙文章 前10條
1 ;微生物燃料電池處理污水發(fā)電兩不誤[N];中國(guó)環(huán)境報(bào);2005年
2 記者 符王潤(rùn) 通訊員 曾曉舵 李潔尉 劉靜;微生物燃料電池有很大挖掘空間[N];廣東科技報(bào);2010年
3 蕭瀟;微生物燃料電池:處理污水發(fā)電兩不誤[N];中國(guó)煤炭報(bào);2005年
4 記者 毛黎;微生物燃料電池技術(shù)又推進(jìn)一步[N];科技日?qǐng)?bào);2006年
5 紀(jì)振宇;微生物燃料電池為汽車節(jié)能環(huán)保提供解決方案[N];中國(guó)高新技術(shù)產(chǎn)業(yè)導(dǎo)報(bào);2008年
6 本報(bào)記者 趙亞平;蝦兵蟹將派上新用場(chǎng)[N];科技日?qǐng)?bào);2007年
7 張芮;希臘從芝士副產(chǎn)品中回收能源[N];中國(guó)石化報(bào);2010年
8 常麗君;高空“超級(jí)細(xì)菌”可成發(fā)電新能源[N];科技日?qǐng)?bào);2012年
9 編譯 楊孝文;微生物機(jī)器人吃蒼蠅發(fā)電[N];北京科技報(bào);2006年
10 記者 陳勇;美科學(xué)家開發(fā)出微生物燃料電池[N];新華每日電訊;2005年
相關(guān)博士學(xué)位論文 前10條
1 黃杰勛;產(chǎn)電微生物菌種的篩選及其在微生物燃料電池中的應(yīng)用研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2009年
2 陶琴琴;微生物燃料電池同步脫氮除磷及產(chǎn)電性能研究[D];華南理工大學(xué);2015年
3 徐磊;微生物燃料電池PB/rGO陰極材料及導(dǎo)電膜自清潔性能研究[D];大連理工大學(xué);2015年
4 臧國(guó)龍;基于微生物燃料電池的復(fù)雜廢棄物處置及光電催化制氫[D];中國(guó)科學(xué)技術(shù)大學(xué);2013年
5 代瑩;銀/鐵—碳基復(fù)合體作為微生物燃料電池陰極的性能研究[D];黑龍江大學(xué);2016年
6 龔小波;微生物燃料電池高效電極與界面設(shè)計(jì)強(qiáng)化產(chǎn)電特性研究[D];哈爾濱工業(yè)大學(xué);2016年
7 孫哲;光催化型微生物燃料電池產(chǎn)電特性及對(duì)污染物去除研究[D];東華大學(xué);2016年
8 程建萍;微生物燃料電池陰極的功能拓展及機(jī)理分析[D];合肥工業(yè)大學(xué);2015年
9 孫彩玉;基于BES污水處理—產(chǎn)能研究及微生物群落結(jié)構(gòu)解析[D];東北林業(yè)大學(xué);2016年
10 杜月;生物陰極微生物燃料電池特性及其與光催化耦合模式的研究[D];哈爾濱工業(yè)大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 張?chǎng)?復(fù)合微生物燃料電池的研究[D];天津大學(xué);2007年
2 周秀秀;微生物燃料電池陰極催化劑雙核酞菁鈷的結(jié)構(gòu)及性能優(yōu)化[D];華南理工大學(xué);2015年
3 黃麗巧;基于微生物燃料電池技術(shù)的同步除碳、硝化/反硝化研究[D];華南理工大學(xué);2015年
4 印霞h,
本文編號(hào):2154850
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2154850.html