天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

碳材料結(jié)構(gòu)與官能化調(diào)控及其應(yīng)用于鋰硫電地和超級(jí)電容器的研究

發(fā)布時(shí)間:2018-07-25 21:23
【摘要】:隨著全世界化石資源日漸減少,環(huán)境污染問(wèn)題日益加重,如今,開發(fā)可持續(xù)清潔能源以及先進(jìn)的能量?jī)?chǔ)存技術(shù)是人類面臨的巨大挑戰(zhàn)。目前,鋰硫電池成為高能量密度電化學(xué)儲(chǔ)能體系的研究熱點(diǎn),而超級(jí)電容器成為高功率密度電化學(xué)儲(chǔ)能體系的研究熱點(diǎn)。鋰硫電池和超級(jí)電容器中都用到碳材料,碳材料作為鋰硫電池單質(zhì)硫的導(dǎo)電基底材料和超級(jí)電容器電極材料,由于其具有導(dǎo)電性高、機(jī)械性能優(yōu)良、可調(diào)孔結(jié)構(gòu)、較大比表面積、價(jià)格低廉等優(yōu)點(diǎn),是迄今為止最理想和應(yīng)用最廣泛的儲(chǔ)能材料之一。在超級(jí)電容器和鋰硫電池中使用的碳材料包括介孔碳、碳納米管、碳纖維、石墨烯等。本文從實(shí)用角度出發(fā),利用簡(jiǎn)單易于重復(fù)的制備方法,合成了一種無(wú)序介孔碳,一種摻硼無(wú)序介孔碳和一種具有微孔和介孔的無(wú)序碳材料,將其作為鋰硫電池正極活性硫的負(fù)載基底材料,制備碳/硫復(fù)合正極材料,進(jìn)行了電化學(xué)性能測(cè)試和表征。另外,以商品摻氮石墨烯為原料,通過(guò)進(jìn)一步高溫還原處理得到熱穩(wěn)定的摻氮石墨烯材料,將其作為超級(jí)電容器電極材料,進(jìn)行了電化學(xué)性能測(cè)試。在兩方面工作中探討了碳材料的官能團(tuán)對(duì)材料電化學(xué)性能的影響。主要研究?jī)?nèi)容如下:1、以酚醛樹脂預(yù)聚體為碳源,以正硅酸乙酯為擴(kuò)孔劑,制備了具有雙孔徑、結(jié)構(gòu)穩(wěn)定、易于重復(fù)的無(wú)序介孔碳DMC,并將此無(wú)序介孔碳用于鋰硫電池正極材料中,利用熔融法,制備了不同含硫量的碳/硫復(fù)合材料,考察了碳/硫復(fù)合材料的結(jié)構(gòu)和電化學(xué)性能,探討了無(wú)序介孔中載硫量的大小對(duì)其電化學(xué)性能的影響。實(shí)驗(yàn)結(jié)果表明:以無(wú)序介孔碳DMC為載硫基底材料,通過(guò)簡(jiǎn)單的熱熔法,當(dāng)單質(zhì)硫負(fù)載量少(66.7wt%)時(shí),硫能以較小的納米尺寸進(jìn)入到介孔碳的孔道內(nèi)高度分散,當(dāng)單質(zhì)硫負(fù)載量大(75wt%)時(shí),有少量硫附著在碳材料表面;碳/硫復(fù)合材料中介孔碳內(nèi)部存在的微量O原子對(duì)單質(zhì)硫具有一定的化學(xué)吸附作用;在碳/硫復(fù)合材料中隨著硫含量的增加,硫電極的放電比容量與活性物質(zhì)利用率下降;對(duì)于含硫量為66.7 wt%的復(fù)合材料,在1C倍率下容量保持率較高,庫(kù)侖效率接近100%,表明該復(fù)合材料中碳負(fù)載基底結(jié)構(gòu)穩(wěn)定,機(jī)械強(qiáng)度大,對(duì)電流密度的變化具有良好的應(yīng)變能力,該材料用于實(shí)際鋰硫電池將具有非常重要的意義。2、以硼酸為硼源,以正硅酸乙酯為擴(kuò)孔劑,制備了摻硼無(wú)序介孔碳BDMC,并將此介孔碳與單質(zhì)硫按一定質(zhì)量比經(jīng)熱融法制備摻硼介孔碳/硫復(fù)合材料?疾炝藫脚鸾榭滋/硫復(fù)合材料的結(jié)構(gòu)和電化學(xué)性能,比較了摻硼介孔碳/硫復(fù)合材料與沒(méi)摻硼介孔碳/硫復(fù)合材料的電化學(xué)性能的優(yōu)劣。實(shí)驗(yàn)通過(guò)XPS,RS測(cè)試手段確定了BDMC材料中存在少量的B原子;摻硼B(yǎng)DMC材料與未摻硼DMC材料相比,孔結(jié)構(gòu)、比表面積、孔容沒(méi)有太大差別;XPS測(cè)試表明,摻硼復(fù)合材料中的B原子產(chǎn)生了輕微的正極化現(xiàn)象,從而使摻硼復(fù)合材料在碳硫界面上對(duì)硫具有更大的吸附作用力,在充放電過(guò)程中能夠?qū)Χ嗔蚧镪庪x子產(chǎn)生化學(xué)吸附作用,抑制其溶解于電解液,因此摻硼碳/硫復(fù)合材料在不同放電倍率下的電化學(xué)性能優(yōu)于未摻硼碳/硫復(fù)合材料。3、以酚醛樹脂預(yù)聚體為碳源,以KOH和Zn Cl2為聯(lián)合擴(kuò)孔劑,制備了具有更大比表面積和孔容,且具有微孔/介孔的無(wú)序碳MC,將此無(wú)序微孔/介孔碳材料用于鋰硫電池正極材料中,利用熔融法制備碳/硫(MC:S=1:2)復(fù)合材料,電化學(xué)測(cè)試表明:MC:S=1:2復(fù)合材料的比容量和循環(huán)性能明顯高與DMC:S=1:2復(fù)合材料,分析其中的原因是由于MC碳材料具有微孔/介孔結(jié)構(gòu)和更大的比表面積和孔容,其中的微孔能有效抑制多硫化物的溶解,較大的孔容與比表面積能對(duì)活性物質(zhì)硫和充放電過(guò)程中產(chǎn)生的多硫化物產(chǎn)生更強(qiáng)的吸附作用,同時(shí)能緩解硫正極在充放電過(guò)程中體積膨脹的問(wèn)題。另外,在此MC:S=1:2復(fù)合材料表面包覆一層導(dǎo)電PANI后,能進(jìn)一步提高電池的比容量和活性物質(zhì)硫的利用率。4、以購(gòu)買的商品還原石墨烯C-r GO為原料,使用氮?dú)浠旌蠚鉃檫原劑,在不同溫度下進(jìn)一步還原處理C-r GO,得到了不同溫度熱處理后的熱穩(wěn)定還原石墨烯TS-r GO,并將此類熱穩(wěn)定石墨烯材料作為超級(jí)電容器電極材料,通過(guò)電化學(xué)測(cè)試對(duì)比了原料石墨烯和不同溫度制備的熱穩(wěn)定石墨烯材料的電化學(xué)性能的優(yōu)劣,分析并探討了其中存在的原因。實(shí)驗(yàn)結(jié)果表明:不同熱處理溫度對(duì)氮摻雜的商品石墨烯C-r GO材料的微觀形貌,晶格結(jié)構(gòu)影響不大,TS-r GO材料仍然是含氮的石墨烯材料;隨熱處理溫度的升高,石墨烯材料中的N,O官能團(tuán)分解,造成石墨層間距的減小,溫度超過(guò)800℃,部分石墨烯片的尺寸有所增大;盡管隨熱處理溫度的升高,得到的TS-r GO材料的比電容,比能量和比功率隨著溫度的升高而下降,但其在高倍率下循環(huán)性能表現(xiàn)良好;商品C-r GO作為超極電容器電極材料循環(huán)性能較差,在前1000次循環(huán)過(guò)程中容量保持率下降嚴(yán)重(下降了10.1%),而不同溫度熱處理得到的TS-r GO材料表現(xiàn)出較好的高倍率循環(huán)穩(wěn)定性,尤其是TS-r GO(700)材料的容量保持率,在前1000次循環(huán)中只下降了0.3%,在10000次循環(huán)后容量保持率仍有97.2%。實(shí)驗(yàn)發(fā)現(xiàn)TS-r GO材料中被優(yōu)化的氮原子的官能團(tuán),有助于改善其循環(huán)壽命,降低泄漏電流密度,材料高倍率電容性能的增加可以歸因于其電導(dǎo)率的增加。
[Abstract]:With the decrease of fossil resources in the world and the increasing pollution of the environment, the development of sustainable clean energy and advanced energy storage technology is a great challenge for mankind. Currently, lithium sulfur batteries have become a hot spot in high energy density electrochemical energy storage system, and supercapacitors become high power density electrochemical storage. Carbon materials are used in both lithium sulfur batteries and supercapacitors. Carbon materials are used as conductive base materials and supercapacitor electrode materials for the single sulfur of lithium sulfur batteries. Because of their high conductivity, good mechanical properties, adjustable pore structure, large surface product and low price, it is the most ideal and should be done so far. Carbon materials used in supercapacitors and lithium sulfur batteries include mesoporous carbon, carbon nanotubes, carbon fibers and graphene, which are one of the most widely used energy storage materials. From a practical point of view, a disordered mesoporous carbon, a boron doped mesoporous carbon, and a porous mesoporous and mesoporous material are synthesized from a practical point of view. The carbon / sulfur composite positive material was prepared by the disordered carbon material, which was used as the base material of the active sulfur of the lithium sulfur battery. The electrochemical performance was tested and characterized. In addition, the thermally stable nitrogen doped graphene material was obtained by further high temperature reduction by the further high temperature reduction of graphene, and it was used as the electrode material of the supercapacitor. The effects of the functional groups of carbon materials on the electrochemical properties of the materials are discussed in two aspects. The main contents are as follows: 1, with the phenol formaldehyde resin prepolymer as the carbon source and the ethyl orthosilicate as the reaming agent, the disordered mesoporous carbon DMC with a double hole diameter, stable structure and easy repetition is prepared, and this disorder will be disordered. Carbon / sulfur composite materials with different sulfur content were prepared by melting method in the cathode materials of lithium sulfur battery. The structure and electrochemical properties of carbon / sulfur composites were investigated. The effects of sulfur loading on the electrochemical properties of the disordered mesoporous materials were investigated. The experimental results showed that the disordered mesoporous carbon DMC was used as the base material for the sulfur carrier. By a simple heat melting method, when the load of elemental sulfur is less (66.7wt%), sulfur can be highly dispersed into the pore of mesoporous carbon in a small nanometer size. When the amount of sulfur is large (75wt%), a small amount of sulfur is attached to the surface of the carbon material. The trace O atoms of the carbon / sulfur composite material have a certain chemistry on the elemental sulfur. With the increase of sulfur content in carbon / sulfur composites, the discharge ratio of the sulfur electrode and the utilization ratio of the active substance decrease. For the composite with 66.7 wt% sulfur content, the capacity of the composite material is high and the coulomb efficiency is close to 100% at the rate of 1C, indicating that the carbon loaded substrate in the composite is stable, the mechanical strength is large, and the current is high. The density change has good strain ability. The material used in the actual lithium sulfur battery will have a very important significance.2. Using boric acid as the boron source and the ethyl orthosilicate as the reamer, the boron doped disordered mesoporous carbon BDMC is prepared, and the boron doped mesoporous carbon / sulfur composites are prepared by the heat thawing method of the mesoporous carbon and the elemental sulfur by the heat thawing method. The structure and electrochemical properties of boron doped mesoporous carbon / sulfur composites are compared. The electrochemical properties of boron doped mesoporous carbon / sulfur composites and boron doped mesoporous carbon / sulfur composites are compared. A small amount of B atoms exist in the BDMC material by XPS and RS testing. The pore structure of boron doped BDMC material is compared with the non boron doped DMC material. The surface area, Kong Rong is not very different. The XPS test shows that the B atom in the boron doped composite produces a slight positive polarization, which makes the boron doped composite have a greater adsorption force on the sulfur at the carbon and sulfur interface, and can produce a chemical adsorption on the polysulfide anion in the charge discharge process, and inhibit its dissolution in electrolysis. Therefore, the electrochemical performance of boron doped carbon / sulfur composites at different discharge rates is better than that of.3 without boron doped carbon / sulfur composite material, with phenolic resin prepolymer as carbon source and KOH and Zn Cl2 as joint reamers, a disordered carbon MC with larger specific surface area and Kong Rong and microporous / mesoporous carbon is prepared, and the disordered microporous / mesoporous carbon material is used. Carbon / sulfur (MC:S=1:2) composites were prepared by melting method in the cathode materials of lithium sulphur battery. The electrochemical test showed that the specific capacity and cyclic properties of MC:S=1:2 composites were significantly higher than that of DMC:S=1:2 composites. The reason for the analysis was that the MC carbon material had microporous / mesoporous structure and larger specific surface area and Kong Rong, in which the microstructure of the composites was micro. The pore capacity can effectively inhibit the dissolution of polysulfide. The larger pore volume and specific surface area can have a stronger adsorption effect on the sulfur and the polysulfide produced during the charge discharge process. At the same time, it can alleviate the volume expansion of the sulfur positive pole during the charge discharge process. In addition, after coating the surface of the MC:S=1:2 composite surface with a conductive PANI, it can be entered. In one step, the specific capacity of the battery and the utilization ratio of the active substance sulfur are improved.4, and the purchased commodity reduction graphene C-r GO is used as the raw material, and the hydrogen mixture of nitrogen and hydrogen is used as the reducing agent to further reduce the C-r GO at different temperatures. The thermal stabilized reductive stonene TS-r GO after the heat treatment at different temperatures is obtained, and this kind of thermally stabilized graphene is used as the material. For supercapacitor electrode materials, the electrochemical properties of graphene and thermally stabilized graphene materials prepared at different temperatures are compared by electrochemical tests. The reasons are analyzed and discussed. The experimental results show that the microstructure of the C-r GO materials with different heat treatment temperatures on the nitrogen doped graphene is the lattice junction. The structure of the TS-r GO material is still a nitrogen containing graphene material. With the increase of heat treatment temperature, the N and O functional groups in the graphene materials are decomposed, resulting in the decrease of the spacing of the graphite layer, the temperature is over 800 degrees C, and the size of some graphene sheets increases. Although the heat treatment temperature increases, the specific capacitance and the specific energy of the obtained TS-r GO material are more than the energy. And the specific power decreases with the increase of temperature, but its performance is good at high rate, and the circulation performance of C-r GO as the electrode material of supercapacitor is poor, and the capacity retention rate in the first 1000 cycles decreases seriously (10.1%), and the TS-r GO material obtained by different temperature heat treatment shows a better high ratio. The cyclic stability, especially the capacity retention of TS-r GO (700) material, only decreased by 0.3% in the first 1000 cycles. After the 10000 cycle, the capacity retention rate still has the 97.2%. experiment to find the optimized nitrogen atom group in the TS-r GO material, which helps to improve its cycle life, reduce the leakage current density, and increase the high rate capacitance of the material. Addition can be attributed to an increase in its electrical conductivity.
【學(xué)位授予單位】:東北師范大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TQ127.11;O646

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 賀福;碳(炭)材料與超級(jí)電容器[J];高科技纖維與應(yīng)用;2005年03期

2 鄧梅根,楊邦朝,胡永達(dá);卷繞式活性炭纖維布超級(jí)電容器的研究[J];功能材料;2005年08期

3 方勤;楊邦朝;;超級(jí)電容器用中孔炭的研究[J];功能材料;2005年12期

4 林志東,劉黎明,張萬(wàn)榮;超級(jí)電容器氧化物電極材料研究進(jìn)展[J];武漢化工學(xué)院學(xué)報(bào);2005年02期

5 楊紅生,周嘯,張慶武;以多層次聚苯胺顆粒為電極活性物質(zhì)的超級(jí)電容器的電化學(xué)性能[J];物理化學(xué)學(xué)報(bào);2005年04期

6 周鵬偉;李寶華;康飛宇;曾毓群;;椰殼活性炭基超級(jí)電容器的研制與開發(fā)[J];新型炭材料;2006年02期

7 劉國(guó)陽(yáng);周安寧;;超級(jí)電容器炭基電極材料研究進(jìn)展[J];炭素;2006年04期

8 巢亞軍;原鮮霞;馬紫峰;;復(fù)合材料在超級(jí)電容器中的應(yīng)用研究進(jìn)展[J];稀有金屬材料與工程;2007年06期

9 懷永建;林子吉;胡學(xué)步;鄧正華;索繼栓;;一種軟包裝超級(jí)電容器及其高電壓模塊[J];合成化學(xué);2007年S1期

10 張瑩;劉開宇;張偉;王洪恩;;二氧化錳超級(jí)電容器的電極電化學(xué)性質(zhì)[J];化學(xué)學(xué)報(bào);2008年08期

相關(guān)會(huì)議論文 前10條

1 趙健偉;倪文彬;王登超;黃忠杰;;超級(jí)電容器電極材料的設(shè)計(jì)、制備及性質(zhì)研究[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第10分會(huì)場(chǎng)摘要集[C];2010年

2 張琦;鄭明森;董全峰;田昭武;;基于薄液層反應(yīng)的新型超級(jí)電容器——多孔碳電極材料的影響[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第10分會(huì)場(chǎng)摘要集[C];2010年

3 馬衍偉;;新型超級(jí)電容器石墨烯電極材料的研究[A];第七屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第7分冊(cè))[C];2010年

4 劉不厭;彭喬;孫s,

本文編號(hào):2145125


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2145125.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶40806***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com