碳化硅單晶襯底超精密拋光關(guān)鍵技術(shù)研究
[Abstract]:The development of the semiconductor industry is closely related to our national defense, military, aerospace, energy and other important fields of science and technology. The third generation of semiconductor materials, represented by silicon carbide (SiC) single crystal, are an important new type of wide band gap semiconductor material, which can be used as a substrate for the growth of gallium (GaN) and graphene by epitaxy. Young's modulus, high hardness, high temperature resistance and corrosion resistance can be widely used to make high temperature and high frequency high power devices. Especially in military industry, it is the core of new generation radar and satellite communication. It has important application value and broad development prospect. It has become the focus of international attention now. Because of the opening of silicon (Si) electronic components. Therefore, it is more important and urgent to study the third generation of broadband gap semiconductor materials. At the same time, it will lead the processing quality and precision of the third semiconductor industrial revolution.SiC single crystal substrate directly to influence the performance of the device, so that the machined surface is required to be super smooth, no defect and no damage. The last step of the processing technology is divided into two processes: mechanical polishing and chemical mechanical polishing. Mechanical polishing plays a decisive role in the material removal rate and the flatness. Chemical mechanical polishing is the core to realize the surface roughness of the atomic level. Therefore, the ultra precision polishing technology is the key to ensure high precision, high efficiency and low cost of SiC single crystal substrate. In this paper, the process and mechanism of mechanical polishing and chemical mechanical polishing are studied on the surface roughness, flatness and material removal rate of the 3 inch SiC single crystal substrate. The relationship between the surface roughness and the material removal rate is weighed by the comprehensive scoring method, and the optimum technological parameters under different conditions are obtained according to the different requirements. From the microcosmic and macro two scales, the effects of chemical, mechanical and chemical mechanical coupling on the atomic level removal mechanism of SiC single crystal substrate are analyzed. The main contents are as follows: (1) a two-dimensional geometric model of the non shelf planetary double-sided mechanical polishing is established, and the SiC single crystal substrate and the polishing pad are derived. The relative motion trajectory equation of the upper grinding particles, the distribution radius of the abrasive particles, the distribution radius of the SiC substrate, the speed ratio of the ring and the sun rotation, the influence of the speed ratio of the disc and the sun wheel on the polishing trajectory and the curvature are analyzed. The polishing uniformity function is constructed. The coefficient of variation is calculated by the statistical method, and the radius of the abrasive spacing, the ring of the tooth and the sun wheel are studied. The influence of three factors on the rotational speed ratio and the speed ratio of the discs and the sun wheel on the uniform polishing of the SiC single crystal substrate and the abrasive wear on the polishing pad. (2) a three-dimensional physical model of the double-sided mechanical polishing mechanism based on the non shelf planetary differential gear system was established. The displacement, velocity and acceleration of the symmetrical 5 points on the surface of the 3 inch SiC single crystal substrate were analyzed. The correctness of the theoretical model and the feasibility of the planetary differential gear parameters are verified by the coincidence of the change curve. Based on this model, a 3 inch SiC single crystal substrate mechanical polishing orthogonal test is designed. The polishing pressure, the speed of the polishing disk and the diameter of the diamond micro powder are studied by the single factor analysis method and the comprehensive analysis method. The effect of material removal rate, surface roughness and flatness of surface roughness has been obtained. (3) from the microscopic scale, the 6H-SiC single crystal cell model is established, the quantum mechanics is calculated and the molecular dynamics characteristics of the cell model are analyzed. According to the density functional theory and the first principle, the energy band structure is used with the CASTEP module. The molecular dynamics simulation is carried out in the density of States, electron density and charge density. The relative concentration distribution of the atomic density of (100), (010), (001) three surface, the radial distribution function of the degree of disordering of structure, the distribution of temperature and the change of velocity distribution with the position are studied by using the Forcite module. The potential energy and kinetic energy of the cell are analyzed. The change law of non bonding energy, total energy and total enthalpy. (4) a fluid solid coupling model for chemical mechanical polishing of a 3 inch SiC single crystal substrate was established. The unidirectional fluid solid coupling effect of the polishing liquid on the machined surface of the SiC substrate was analyzed based on ANSYS. The pressure, stress, strain and strain of the convective solid coupling interface of the polishing fluid flow and the bottom speed of the polishing liquid were analyzed. It can provide theoretical guidance for the study of the mechanism of chemical mechanical polishing (5) the influence of the four indexes on the mechanism of chemical mechanical polishing. (5) the influence of the technological parameters of chemical mechanical polishing on the material removal rate and surface roughness of the SiC substrate is studied. First, the orthogonal test of six factors and five levels of chemical mechanical polishing (polishing pressure, rotating speed of discs, The particle diameter, pH, concentration of polishing liquid and the concentration of oxidant are determined. The order of the single factor is determined by the method of variance analysis. The optimal process parameters of the material removal rate and the surface roughness single target are obtained. Secondly, the weight coefficient between the removal rate of material and the surface roughness is determined by the comprehensive scoring method. Then, in view of the three factors (polishing pressure, disc speed and concentration of polishing liquid), the three factor two regression orthogonal rotation experiment was designed, and the mathematical equation of the regression model was established. The effect of coupling effect between multiple factors on the target was analyzed by the surface response map. The selection of process parameters in the actual processing process can provide theoretical guidance and reference for the next step of precision digital control.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TQ127.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;化學(xué)機(jī)械拋光[J];表面工程資訊;2005年04期
2 宋曉嵐;李宇q;江楠;屈一新;邱冠周;;化學(xué)機(jī)械拋光技術(shù)研究進(jìn)展[J];化工進(jìn)展;2008年01期
3 ;適于高精度平面化的化學(xué)機(jī)械拋光方法[J];電鍍與涂飾;1999年03期
4 李秀娟,金洙吉,蘇建修,康仁科,郭東明;銅布線化學(xué)機(jī)械拋光技術(shù)分析[J];中國機(jī)械工程;2005年10期
5 張朝輝,雒建斌,溫詩鑄;化學(xué)機(jī)械拋光特性的應(yīng)力偶模擬[J];計(jì)算力學(xué)學(xué)報(bào);2005年02期
6 李長河;;化學(xué)機(jī)械拋光技術(shù)[J];現(xiàn)代零部件;2006年03期
7 廉進(jìn)衛(wèi);張大全;高立新;;化學(xué)機(jī)械拋光液的研究進(jìn)展[J];化學(xué)世界;2006年09期
8 王永光;趙永武;;基于分子量級的化學(xué)機(jī)械拋光界面動力學(xué)模型研究[J];摩擦學(xué)學(xué)報(bào);2007年03期
9 張振宇;郭東明;康仁科;高航;李巖;;軟脆功能晶體碲鋅鎘化學(xué)機(jī)械拋光[J];機(jī)械工程學(xué)報(bào);2008年12期
10 李軍;左敦穩(wěn);朱永偉;孫玉利;王軍;;無磨料化學(xué)機(jī)械拋光的研究進(jìn)展[J];機(jī)械制造與自動化;2008年06期
相關(guān)會議論文 前10條
1 雷紅;;化學(xué)機(jī)械拋光技術(shù)及其在電子制造中的應(yīng)用[A];2009年全國電子電鍍及表面處理學(xué)術(shù)交流會論文集[C];2009年
2 常敏;袁巨龍;樓飛燕;王志偉;;化學(xué)機(jī)械拋光技術(shù)概述[A];全國生產(chǎn)工程第九屆年會暨第四屆青年科技工作者學(xué)術(shù)會議論文集(二)[C];2004年
3 牛新環(huán);劉玉嶺;檀柏梅;馬振國;;藍(lán)寶石襯底化學(xué)機(jī)械拋光的機(jī)理研究[A];第六屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集(10)[C];2007年
4 魏昕;熊偉;袁慧;杜宏偉;;化學(xué)機(jī)械拋光機(jī)理的建模分析[A];全國生產(chǎn)工程第九屆年會暨第四屆青年科技工作者學(xué)術(shù)會議論文集(二)[C];2004年
5 謝華杰;陳治明;楊鶯;;碳化硅化學(xué)機(jī)械拋光工藝[A];中國晶體學(xué)會第四屆全國會員代表大會暨學(xué)術(shù)會議學(xué)術(shù)論文摘要集[C];2008年
6 徐進(jìn);雒建斌;路新春;潘國順;;硅片化學(xué)機(jī)械拋光碰撞去除機(jī)理研究[A];人才、創(chuàng)新與老工業(yè)基地的振興——2004年中國機(jī)械工程學(xué)會年會論文集[C];2004年
7 王永光;白靜;趙永武;顧堅(jiān);;化學(xué)機(jī)械拋光的三體微觀接觸模型[A];2006全國摩擦學(xué)學(xué)術(shù)會議論文集(一)[C];2006年
8 趙雪松;;脈沖電化學(xué)機(jī)械拋光工具設(shè)計(jì)及其應(yīng)用[A];第十屆全國特種加工學(xué)術(shù)會議論文集[C];2003年
9 方亮;趙蓉;任小艷;雷紅;陳入領(lǐng);;無磨;瘜W(xué)機(jī)械拋光的研究進(jìn)展[A];第十一屆全國摩擦學(xué)大會論文集[C];2013年
10 張偉;路新春;劉宇宏;雒建斌;;氨基乙酸-H_2O_2體系拋光液中銅的化學(xué)機(jī)械拋光研究[A];第八屆全國摩擦學(xué)大會論文集[C];2007年
相關(guān)重要報(bào)紙文章 前1條
1 通訊員 劉靜;我市又一國際合作項(xiàng)目順利通過科技部驗(yàn)收[N];廊坊日報(bào);2012年
相關(guān)博士學(xué)位論文 前10條
1 張鵬;碳化硅單晶襯底超精密拋光關(guān)鍵技術(shù)研究[D];山東大學(xué);2017年
2 邊燕飛;銅與釕電化學(xué)機(jī)械拋光及其特性的研究[D];哈爾濱工業(yè)大學(xué);2014年
3 王彩玲;300mm硅片化學(xué)機(jī)械拋光設(shè)備及其關(guān)鍵技術(shù)研究[D];大連理工大學(xué);2010年
4 陳曉春;化學(xué)機(jī)械拋光試驗(yàn)及其材料去除機(jī)理的研究[D];江南大學(xué);2014年
5 劉敬遠(yuǎn);硅片化學(xué)機(jī)械拋光加工區(qū)域中拋光液動壓和溫度研究[D];大連理工大學(xué);2009年
6 宋曉嵐;納米SiO_2漿料中半導(dǎo)體硅片的化學(xué)機(jī)械拋光及其應(yīng)用研究[D];中南大學(xué);2008年
7 曾旭;新型銅互連擴(kuò)散阻擋層釕、釕鉭合金、鉬基薄膜的化學(xué)機(jī)械拋光性能研究[D];復(fù)旦大學(xué);2013年
8 孫禹輝;硅片化學(xué)機(jī)械拋光中材料去除非均勻性研究[D];大連理工大學(xué);2011年
9 蔣建忠;芯片化學(xué)機(jī)械拋光過程中材料吸附去除機(jī)理的研究[D];江南大學(xué);2009年
10 余劍峰;新型化學(xué)機(jī)械拋光墊和拋光液的研究[D];華南理工大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 張念民;鈮酸鋰晶體納米壓痕及化學(xué)機(jī)械拋光研究[D];大連理工大學(xué);2015年
2 段波;新型銅互連阻擋層材料Ru的CMP研究[D];河北工業(yè)大學(xué);2015年
3 梁淼;銅互聯(lián)阻擋層新材料鋨的化學(xué)機(jī)械拋光研究[D];安徽工業(yè)大學(xué);2014年
4 程海豐;超薄柔性顯示襯底Roll-to-Roll化學(xué)機(jī)械拋光機(jī)研制[D];河南工業(yè)大學(xué);2015年
5 胡坤;超薄304不銹鋼片Roll-to-Roll固結(jié)磨料化學(xué)機(jī)械拋光輥研制[D];河南工業(yè)大學(xué);2015年
6 林廣川;化學(xué)機(jī)械拋光中顆粒運(yùn)動與材料去除的實(shí)驗(yàn)研究[D];清華大學(xué);2015年
7 陳佳鵬;超薄304不銹鋼片Roll-to-Roll化學(xué)機(jī)械拋光液研究[D];河南科技學(xué)院;2016年
8 孫發(fā)青;超聲波精細(xì)霧化化學(xué)機(jī)械拋光硬脆材料去除機(jī)理研究[D];江南大學(xué);2016年
9 王金普;硬脆材料(藍(lán)寶石、微晶玻璃)晶片化學(xué)機(jī)械拋光研究[D];安徽工業(yè)大學(xué);2016年
10 段能東;鈦合金化學(xué)機(jī)械拋光及納米壓痕陣列表面制造研究[D];大連理工大學(xué);2016年
,本文編號:2139321
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2139321.html