天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 化學工程論文 >

KDP晶體激光分離切割機理及關(guān)鍵技術(shù)研究

發(fā)布時間:2018-07-15 08:41
【摘要】:KH2PO4(KDP)晶體是目前慣性約束核聚變(ICF)裝置中變頻器和光開關(guān)唯一可使用的大尺寸晶體。然而質(zhì)軟、脆性高、對溫度和應(yīng)力變化敏感、易開裂和潮解等特性,使KDP被公認為是一種極難加工的材料。目前,國內(nèi)外的研究大量集中在KDP晶體的超精密拋光方面,而關(guān)于KDP晶體的切割卻鮮有報道。目前KDP晶體的切割仍采用傳統(tǒng)帶鋸或金剛石線鋸機械切割方式,不但效率低下,加工安全性也很差,經(jīng)常發(fā)生毀滅性的碎裂。本文針對目前存在的技術(shù)難點和挑戰(zhàn),從激光誘導拉應(yīng)力分離入手,在國內(nèi)外首次提出了KDP晶體激光分離切割創(chuàng)新技術(shù),為晶體器件的制造提供了一條全新的技術(shù)途徑。 本論文利用KDP晶體抗壓強度高(113Mpa)而抗拉強度極低(僅為5~8Mpa)這一特性以及透明材料對激光呈體吸收效應(yīng),將超快激光“冷”加工技術(shù)和傳統(tǒng)激光的“熱”加工技術(shù)有機結(jié)合,提出了KDP晶體雙激光束分離切割技術(shù)和KDP晶體鏡面無損激光分離技術(shù)。該技術(shù)的基本原理是利用超快激光對KDP晶體進行預(yù)處理,實現(xiàn)晶體光吸收率和分子結(jié)合力的人工調(diào)控,再使用連續(xù)激光束在晶體內(nèi)誘導拉應(yīng)力或微區(qū)拉應(yīng)力實現(xiàn)晶體沿預(yù)處理線分離切割。因此本論文研究工作及成果主要包括以下幾個方面: (1)通過光線追跡和波動光學理論,建立了聚焦激光在KDP晶體內(nèi)的傳輸模型。模擬分析了不同參數(shù)的激光聚焦進不同取向的KDP晶體后的傳輸、聚焦、雙折射離焦和光斑畸變特性。結(jié)果表明晶體雙折射效應(yīng)會嚴重影響E光的傳輸特性,并推導出了晶體內(nèi)部產(chǎn)生的三維動態(tài)光強分布函數(shù)。 (2)研究了超快激光與KDP晶體的相互作用過程,結(jié)果表明峰值功率較低時可實現(xiàn)晶體內(nèi)吸收率和分子結(jié)合力的三維調(diào)控;而峰值功率較高時可實現(xiàn)微裂紋的預(yù)制。研究了傳統(tǒng)連續(xù)/長脈沖激光與晶體的相互作用,確定了可用于KDP晶體激光分離(或無損鏡面分離)的相互作用機理、機制和加工光學系統(tǒng)原型。 (3)基于加工光學系統(tǒng)和光強分布函數(shù),建立了晶體內(nèi)激光誘導動態(tài)溫度場和熱應(yīng)力場分布數(shù)學模型,揭示了KDP晶體激光分離切割機理和過程。表明分離機理為激光誘導的Y方向拉應(yīng)力或微區(qū)拉應(yīng)力。同時進行了數(shù)值模擬研究,確定了關(guān)鍵激光分離切割參數(shù)和最優(yōu)工藝區(qū)間,探明了分離切割過程中的潛在不利因素,以進一步提高分離切割過程的可靠性和穩(wěn)定性。 (4)基于數(shù)值模擬和理論分析研究結(jié)果,建立了KDP晶體激光分離和無損鏡面分離系統(tǒng)。采用雙激光束分離技術(shù)實現(xiàn)了KDP晶體相對粗糙度僅為2.684μm,局部粗糙度低于500nm的分離切割,其分離速度為機械切割的20余倍。采用激光無損鏡面分離技術(shù)實現(xiàn)了KDP晶體表面粗糙度為4.7nm(p-v)和2.1nm(RMS),平面度為5.433μm,角向精度低于0.06°的無損鏡面分離,其分離速度更是高達機械切割技術(shù)的200倍以上。同時分析了各分離參數(shù)的影響規(guī)律,并開展了相關(guān)激光分離切割技術(shù)實驗研究和加工工藝優(yōu)化,獲得了一套完整的KDP晶體激光分離切割技術(shù)理論。
[Abstract]:KH2PO4 (KDP) crystal is the only large size crystal that can be used in the current inertial confinement fusion (ICF) device. However, it is very soft, high brittle, sensitive to temperature and stress changes, easy to crack and deliquescence, so that KDP is considered to be a very difficult to be machined. At present, a lot of research at home and abroad is concentrated in the KDP crystal. However, there are few reports on ultra precision polishing, while the cutting of KDP crystals is rarely reported. At present, the cutting of KDP crystals is still used by traditional band saw or diamond wire saw. Not only the efficiency is low, but also the processing safety is poor, and it often occurs destructive fragmentation. In this paper, the present technical difficulties and challenges are induced by laser induced tensile stress points. In the first place, the innovative technology of laser separation and cutting of KDP crystals was first proposed at home and abroad, which provided a brand new technical approach for the manufacture of crystal devices.
In this paper, the properties of KDP crystal with high compressive strength (113Mpa) and very low tensile strength (only 5 to 8Mpa), and the absorption effect of transparent materials on laser, are combined to combine the ultra fast laser "cold" technology with the traditional laser "hot" processing technology, and the double laser beam separation and cutting technology of KDP crystal and the mirror surface of the KDP crystal are put forward. The basic principle of this technology is to preprocess the KDP crystal with ultra fast laser to realize the artificial regulation of crystal light absorption and molecular binding force, and then use continuous laser beam to induce tensile stress or micro zone tensile stress in the crystal to separate and cut the crystal along the preprocessing line. Therefore, the work and results of this paper are studied and studied in this paper. It mainly includes the following aspects:
(1) through the ray tracing and the wave optics theory, the transmission model of the focused laser in the KDP crystal is established. The transmission, the focusing, the birefringence and the spot distortion of the KDP crystals with different orientation are simulated and analyzed. The results show that the double refraction effect of the crystal will seriously affect the transmission characteristics of the E light, and the derivation is derived. The three-dimensional dynamic intensity distribution function is generated inside the crystal.
(2) the interaction between the ultrafast laser and the KDP crystal is studied. The results show that the internal absorption rate and the molecular binding force can be controlled in three dimensions when the peak power is low, while the micro crack can be prefabricated when the peak power is high. The interaction between the traditional continuous / long pulse laser and the crystal is studied, and it is determined that the KDP crystal can be used in the crystal. The interaction mechanism, mechanism and prototype of processing optical system for laser separation (or lossless mirror separation).
(3) based on the processing optical system and the light intensity distribution function, a mathematical model of laser induced dynamic temperature field and thermal stress field distribution in the crystal is established. The mechanism and process of laser separation and cutting of KDP crystal are revealed. It is shown that the separation mechanism is the tensile stress or the tensile stress in the Y direction induced by the laser. In order to further improve the reliability and stability of the separation and cutting process, the potential disadvantageous factors in the separation and cutting process are explored by separating the cutting parameters and the optimal process interval by the bond laser.
(4) based on the results of numerical simulation and theoretical analysis, a laser separation and non destructive mirror separation system for KDP crystals is established. The relative roughness of the KDP crystal is only 2.684 u m and the local roughness is lower than that of 500nm by double laser beam separation technology. The separation speed is more than 20 times that of the mechanical cutting. The surface roughness of KDP crystal is 4.7nm (P-V) and 2.1nm (RMS), the plane degree is 5.433 u m and the angle precision is less than 0.06 degrees. The separation speed is more than 200 times as high as that of the mechanical cutting technology. Meanwhile, the influence law of the separation parameters is analyzed, and the experimental research on the related laser separation and cutting technology is carried out and the experimental research on the related laser separation and cutting technology is carried out. A complete set of theory of laser separation and cutting technology for KDP crystal has been obtained through optimization of processing technology.
【學位授予單位】:華中科技大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:TQ131.13;O786

【相似文獻】

相關(guān)期刊論文 前10條

1 ;比利時科學家研制出導電不導熱的晶體材料[J];稀有金屬;2003年04期

2 ;導電不導熱晶體材料[J];機電設(shè)備;2003年05期

3 許東學 ,蔣民華;晶體材料國家重點實驗室[J];中國基礎(chǔ)科學;2004年03期

4 薛冬峰;;晶體材料的設(shè)計與模擬[J];人工晶體學報;2007年04期

5 陳義;;法發(fā)明高膨脹晶體材料[J];功能材料信息;2007年02期

6 趙衛(wèi)星;姜紅波;王艷;姜孌;馮國棟;溫普紅;;幾種新型功能晶體材料的研究[J];化學工程師;2011年07期

7 ;第二屆四川省晶體材料專業(yè)學術(shù)年會論文題錄[J];硅酸鹽通報;1984年05期

8 王繼揚;山東大學晶體材料實驗室通過國家驗收[J];山東大學學報(自然科學版);1987年04期

9 許心光;;山東大學晶體所產(chǎn)品打入國際市場[J];山東大學學報(自然科學版);1988年03期

10 王繼揚;高樟壽;;晶體材料實驗室[J];化學通報;1991年05期

相關(guān)會議論文 前10條

1 康琦;;浮力對流對晶體材料生長的影響[A];西部大開發(fā) 科教先行與可持續(xù)發(fā)展——中國科協(xié)2000年學術(shù)年會文集[C];2000年

2 洪茂椿;;光電子晶體材料的研發(fā)與產(chǎn)業(yè)化發(fā)展思路[A];第14屆全國晶體生長與材料學術(shù)會議論文集[C];2006年

3 薛冬峰;;晶體材料的設(shè)計與模擬[A];第14屆全國晶體生長與材料學術(shù)會議論文集[C];2006年

4 孫云;王圣來;丁健旭;牟曉明;;晶體材料力學測試方法調(diào)研[A];第15屆全國晶體生長與材料學術(shù)會議論文集[C];2009年

5 蔣民華;;功能晶體材料的發(fā)展[A];第五屆中國功能材料及其應(yīng)用學術(shù)會議論文集Ⅰ[C];2004年

6 孫威;孫桂芳;張澤;侯碧輝;;CdGd_2(WO_2)_4晶體的高分辨電子顯微研究[A];2005年全國電子顯微學會議論文集[C];2005年

7 于吉紅;;分子篩多孔晶體材料的定向設(shè)計與合成[A];第十二屆固態(tài)化學與無機合成學術(shù)會議論文摘要集[C];2012年

8 劉志宏;;含硼骨架無機微孔晶體材料的熱化學研究[A];中國化學會成立80周年第十六屆全國化學熱力學和熱分析學術(shù)會議論文集[C];2012年

9 介萬奇;;光電子晶體材料及其Ⅱ-Ⅵ族化合物晶體生長技術(shù)(摘要)[A];2008全國功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2008年

10 羅軍華;;極性分子基光電晶體材料[A];中國化學會2013年中西部地區(qū)無機化學化工學術(shù)研討會論文集[C];2013年

相關(guān)重要報紙文章 前10條

1 記者 單小書;市領(lǐng)導會見晶體材料專家[N];撫順日報;2007年

2 本報記者 張永強;寶石磨礪始出彩[N];中國人事報;2007年

3 記者 蔡忠仁;福建成立光電晶體材料基地[N];中國化工報;2010年

4 本報實習記者 吳英華;山大華特主營瞄準晶體產(chǎn)業(yè)[N];中國證券報;2002年

5 任霄鵬;可存儲清潔能源的最輕晶體材料誕生[N];人民政協(xié)報;2007年

6 微聞;導電不導熱新式晶體材料研制成功[N];中國電子報;2003年

7 蘇藍;江陰晶體:十年磨一劍[N];科技日報;2001年

8 記者 張梅;碲鋅鎘晶體材料技術(shù)在我省取得重大突破[N];陜西日報;2014年

9 記者 常麗君;新方法可制造自然界沒有的全新晶體[N];科技日報;2011年

10 記者 李聯(lián)慧;我國光電子晶體投入批量生產(chǎn)[N];中國機電日報;2001年

相關(guān)博士學位論文 前10條

1 朱麗麗;(D)ADP晶體生長及基本性質(zhì)研究[D];山東大學;2015年

2 楊磊;功能晶體材料相穩(wěn)定性與相變的理論研究[D];山東大學;2015年

3 鐵貴鵬;KDP晶體單點金剛石車削關(guān)鍵技術(shù)研究[D];國防科學技術(shù)大學;2013年

4 鄭東陽;RE(RE=Nd,Ho,Tm): LiYF_4激光晶體生長及性能研究[D];長春理工大學;2015年

5 張洋;抗灰跡KTP晶體的生長及灰跡形成機理研究[D];山東大學;2015年

6 鄧磊敏;KDP晶體激光分離切割機理及關(guān)鍵技術(shù)研究[D];華中科技大學;2015年

7 姜付義;AlPO_4-5晶體的合成及主客體材料的組裝[D];山東大學;2007年

8 張希清;鉭酸鎵鑭及同構(gòu)化合物晶體的制備和性能研究[D];山東大學;2008年

9 劉偉良;功能材料(D)KDP晶體、BTO薄膜和納米晶的制備及特性研究[D];山東大學;2005年

10 邱志惠;幾種不同對稱性晶體枝狀聚集形貌的特征研究[D];中國地質(zhì)大學;2010年

相關(guān)碩士學位論文 前10條

1 李敏;基于金屬鹵化物體系的給受體型光敏晶體材料的設(shè)計合成及性能表征[D];華南理工大學;2015年

2 吳曉芳;晶體材料的微磨削機理若干研究[D];沈陽理工大學;2015年

3 牛雪姣;摻雜YAG晶體的生長和光學性能研究[D];上海應(yīng)用技術(shù)學院;2015年

4 楊波波;Dy摻雜Bi_4Si_3O_(12)晶體生長及其閃爍性能研究[D];上海應(yīng)用技術(shù)學院;2015年

5 王磊;相界附近鉭鈮酸鉀晶體的電光響應(yīng)特性及其機理研究[D];哈爾濱工業(yè)大學;2015年

6 宋成朋;KDP晶體微水霧溶解拋光方法研究[D];大連理工大學;2015年

7 高雅慧;四方晶系晶體的純模軸研究[D];河北工業(yè)大學;2015年

8 徐秦;納米纖維素晶體及其改性產(chǎn)物對聚丁二酸丁二醇酯的增強作用研究[D];南京大學;2014年

9 李煜q,

本文編號:2123493


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2123493.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1e76d***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com