填充鈮酸鍶鋇陶瓷的熱電性質(zhì)研究
[Abstract]:Thermoelectric materials can realize the direct conversion of thermal energy and electric energy, and have a broad application prospect in semiconductor electric cooling and thermoelectric power generation. Its performance is measured by the excellent value of ZT. The high value of ZT requires the material to have low resistivity and high Seebeck coefficient and low thermal conductivity. Barium strontium niobate has a special tungsten bronze structure and low intrinsic thermal conductivity. It is possible to fill the elements at the unfilled As _ 2 position to regulate the electrical properties and thus optimize the thermoelectric properties. The main work of this paper is to prepare dense Sr0.70 Ba0.30 MxNb2O6 ceramics by alkali metal elements and rare earth metal elements filled with strontium barium niobate. The effects of different sintering methods, different filling elements and different filling amount on the thermoelectric properties of the materials are studied. The main results obtained in this paper are as follows: firstly, the basic metal elements are filled with strontium barium niobate: (A) is used to prepare Li filled samples by air sintering and annealing by solid state reaction method. When Li is filled, the resistivity of the sample decreases and the absolute value of Seebeck coefficient decreases. Sr _ (0.70) Ba_ (0.30) Li _ (0.05) NB _ 2O _ 6 samples have the lowest resistivity, and the PF value reaches 486 渭 W / K _ 2 m at 1073K. However, the thermal conductivity of the samples increased slightly after Li was filled, so the ZT value of the filled samples was not much increased. (B) the PF value of the samples sintered directly in the atmosphere of reductive gas was lower than that of the samples prepared by air sintering and then reductive annealing. The thermoelectric performance is not optimized. Second, the rare earth metal elements filled with strontium barium niobate: after Yb was filled with (A), the resistivity of the sample decreased, Sr0.70 Ba0.30 Yb0.10 NbStud2O6 sample had the lowest resistivity, its PF value reached 426 渭 W / K2m.The thermal conductivity of Yb filled sample decreased and the lattice thermal conductivity was slightly lower than that of unfilled sample. The larger the filling amount, the lower the thermal conductivity, the lower the ZT value compared with the unfilled sample, the higher the ZT value of Sr0.70Ba0.30Yb0.05Nb2O6 sample is at 1073 K. (B) after filling Y, the resistivity of the sample decreases. Furthermore, the resistivity of Sr0.70 Ba0.30 Y0.10 Nb2O6 sample is lower than that of Sr0.70 Ba0.30Y0.10 Nb2O6 sample PF value of 420 渭 W / K2mt1073K, the ZT value of Sr0.70 Ba0.30 Y0.03 Nb2O6 sample is 0.21. (C) the properties of the rare-earth element filled with YbCY are very similar. Third, the material of strontium barium niobate is filled with K element: the experiment shows that pre-sintering in the atmosphere of reductive gas can increase the maximum filling amount. The electrical properties of sintered K samples prepared by pre-sintering in reductive gas atmosphere are better than those of the same filling amount samples. Sr0.70 Ba0.30 K0.10 Nb2O6 samples prepared by air sintering and rereduction annealing. The PF value of the sample reached 528 渭 W / K2m ZT value at 1073 K. The effect of element filling on the thermoelectric properties of strontium barium niobate is systematically studied in this paper. The results show that the resistivity and Seebeck coefficient of the material decrease and the power factor increases after filling the alkali or rare earth metal elements at the A site. After filling alkali metal element, the power factor of the material can increase more than 500 渭 W / K _ 2 m, but the power factor of the rare earth metal increases lower, the maximum value is 420 渭 W / K _ 2 m. The lattice thermal conductivity of the material is higher than that of the unfilled sample when the filling amount is small, and the lattice thermal conductivity decreases with the increase of the filling amount. The properties of the samples filled with alkali elements are better than those of the samples filled with rare earth metals, and the highest ZT value is 0.23.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TQ174.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 單連偉;馬成國;沈廣才;吳澤;董麗敏;韓志東;張顯友;;鈮酸鍶鋇的結(jié)構(gòu)和制備工藝研究進(jìn)展[J];信息記錄材料;2010年01期
2 黃清偉,王佩玲,嚴(yán)東生,程一兵;Sr_(0.4)Ba_(0.6)Nb_2O_6物相形成過程的XRD分析[J];無機(jī)材料學(xué)報;2002年04期
3 鐘維烈,張沛霖,陳煥矗,陳福生,宋永遠(yuǎn);改性鈮酸鍶鋇鈉晶體的彌散性鐵電相變[J];硅酸鹽學(xué)報;1985年03期
4 夏傲;丁前;苗鴻雁;談國強(qiáng);;水熱法制備鈮酸鍶鋇粉體初探[J];電子元件與材料;2007年06期
5 夏傲;苗鴻雁;談國強(qiáng);;鈮酸鍶鋇粉體的水熱合成[J];陜西科技大學(xué)學(xué)報;2007年05期
6 張賀新,趙九蓬,強(qiáng)亮生,權(quán)茂華;聚合物前驅(qū)體法合成鈮酸鍶鋇鐵電薄膜[J];材料科學(xué)與工藝;2004年02期
7 夏傲;丁前;苗鴻雁;;礦化劑對水熱合成鈮酸鍶鋇粉體的影響[J];中國陶瓷;2009年10期
8 張偉;黃金亮;王順興;李謙;顧永軍;;工藝參數(shù)對熔鹽法合成鈮酸鍶鋇粉體的影響[J];材料開發(fā)與應(yīng)用;2009年06期
9 樊慧慶,張良瑩,姚熹;鈮酸鍶鋇鐵電陶瓷的介電弛豫行為[J];無機(jī)材料學(xué)報;1998年03期
10 戚冰;陳國華;;鈮酸鍶鋇陶瓷材料的研究進(jìn)展[J];材料導(dǎo)報;2007年09期
相關(guān)會議論文 前3條
1 徐家躍;童健;范世膺;;鈮酸鍶鋇鐵電晶體的生長研究[A];第四屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集[C];2001年
2 葉輝;李躍甫;;鈮酸鍶鋇高擇優(yōu)取向薄膜的生長與光學(xué)特性研究[A];中國光學(xué)學(xué)會2006年學(xué)術(shù)大會論文摘要集[C];2006年
3 王正;張?jiān)焕?郭揚(yáng)銘;莫黨;;鈮酸鍶鋇薄膜制備及橢偏光譜研究[A];第五屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集Ⅰ[C];2004年
相關(guān)碩士學(xué)位論文 前8條
1 彭亮;鈮酸鍶鋇陶瓷的光學(xué)特性及其鐵電相變[D];華東師范大學(xué);2016年
2 瑪?shù)夏取ゑR合木提;鈮酸鍶鋇基陶瓷的制備及介電性能研究[D];伊犁師范學(xué)院;2017年
3 張亞翠;填充鈮酸鍶鋇陶瓷的熱電性質(zhì)研究[D];山東大學(xué);2017年
4 王麗麗;鈮酸鍶鋇陶瓷的燒結(jié)行為和摻雜改性研究[D];青島大學(xué);2009年
5 戚冰;鈮酸鍶鋇陶瓷材料的制備及性能研究[D];桂林電子科技大學(xué);2008年
6 張寶林;鈮酸鍶鋇陶瓷的制備與介電性能的研究[D];天津大學(xué);2008年
7 劉玉杰;摻雜鈮酸鍶鋇陶瓷的制備及性能[D];青島大學(xué);2013年
8 王煒;鈮酸鹽基取向陶瓷制備技術(shù)研究[D];西北工業(yè)大學(xué);2007年
,本文編號:2122049
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2122049.html