天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 化學(xué)工程論文 >

基于染料分子摻雜ZnO的光電導(dǎo)陰極界面研究

發(fā)布時間:2018-07-13 15:52
【摘要】:有機太陽電池作為一種能低成本獲取太陽能的潛在技術(shù),正受到越來越廣泛的關(guān)注。目前實驗室報道的有機太陽電池最高能量轉(zhuǎn)換效率已經(jīng)超過10%,達到了工業(yè)化生產(chǎn)對于效率的最低要求。但是實驗室中制備有機太陽電池的最優(yōu)條件并不適用于工業(yè)化生產(chǎn)。造成這種現(xiàn)象的最重要的一點就是目前實驗室制備的有機太陽電池各功能層的厚度非常薄,尤其是界面一般只有2~30 nm,而工業(yè)上無法通過印刷技術(shù)大規(guī)模生產(chǎn)如此薄而又均勻的薄膜。為了解決這一問題,本論文提出光電導(dǎo)界面概念并且系統(tǒng)地研究了這類界面提高有機太陽電池性能的機理以及界面厚度對器件性能的影響,為設(shè)計適合于工業(yè)化生產(chǎn)的高性能界面薄膜提供實驗和理論依據(jù)。本論文的工作主要分為四個部分。第一部分工作中,我們使用ZnO/PBI-H雙層界面結(jié)構(gòu)制備陰極界面,并成功地應(yīng)用于有機太陽電池器件中,獲得了優(yōu)異的能量轉(zhuǎn)換效率。PBI-H的修飾能有效降低ZnO的功涵,并且能改善Zn O與活性層之間的接觸。特別是熱處理后,Zn O與PBI-H之間形成的N-Zn化學(xué)鍵增強了雙層界面間的結(jié)合,這有利于電子從PBI-H向ZnO的傳輸,最終使得基于PTB7:PC71BM活性層的器件獲得高達9.43%的能量轉(zhuǎn)換效率。此外,我們這種雙層界面結(jié)構(gòu)陰極界面適用于不同的材料體系中,使P3HT:PC61BM的能量轉(zhuǎn)換效率從3.51%提升到4.78%,PTB7-Th:PC71BM的能量轉(zhuǎn)換效率從8.33%提升到10.31%)。第二部分工作中,我們使用有機染料分子摻雜ZnO來制備光電導(dǎo)陰極界面并應(yīng)用于倒置有機太陽電池,大幅度提高器件的能量轉(zhuǎn)換效率。其中有機染料分子的摻雜濃度只有1%,所以這種界面只吸收很少量的光子,卻具有極高的電導(dǎo)率。以ZnO:PBI-H薄膜為例,在有機太陽電池測試的條件下具有4.5×10-3S/m的電導(dǎo)率,并且PBI-H的摻雜還能提高ZnO薄膜的電子遷移率和降低其功函數(shù);赯nO:PBI-H光電導(dǎo)界面的器件獲得了高達10.5%的能量轉(zhuǎn)換效率(活性層PTB7-Th:PC71BM)。更為重要的是,由于ZnO:PBI-H光電導(dǎo)界面高的電導(dǎo)率,其厚度在30~60 nm變化時,器件性能的變化很小。這種厚度不敏感的界面對于未來的工業(yè)化生產(chǎn)是至關(guān)重要的。我們使用另外的染料分子TCPP摻雜ZnO也獲得了光電導(dǎo)界面,證明了光電導(dǎo)陰極界面是可以通過多種有機染料分子摻雜來實現(xiàn)的。第三部分工作中,我們將水溶性傒酰亞胺衍生物PBI-Py摻雜到ZnO中,發(fā)展了一種水溶液加工的光電導(dǎo)陰極界面。光誘導(dǎo)的電子轉(zhuǎn)移為陰極界面帶來了幾個方面的優(yōu)勢,包括顯著增加的電導(dǎo)率與電子遷移率以及降低功函,這是一個高性能的陰極界面至關(guān)重要的性質(zhì)。這些對于改善電荷傳輸性質(zhì)與功函的新機理將可能引導(dǎo)新一代界面材料的發(fā)展。由于ZnO:PBI-Py光電導(dǎo)陰極界面的高電導(dǎo)率和活性層的高遷移率,即使當(dāng)陰極界面與活性層的厚度分別達到100 nm與300 nm時,基于ZnO:PBI-Py光電導(dǎo)陰極界面與FBT-Th4(1,4):PC71BM活性層的倒置有機太陽電池仍然表現(xiàn)了超過10%的平均能量轉(zhuǎn)換效率。我們的結(jié)果清晰地展示了環(huán)境友好的加工方法與器件性能對厚度不敏感高效有機太陽能電池結(jié)合的可能性,這為有機太陽電池向大規(guī)模生產(chǎn)邁進了一大步。第四部分工作中,我們將光電導(dǎo)陰極界面的應(yīng)用擴展到三元共混體系并且構(gòu)筑了一個新的高效率三元共混體系使用近紅外吸收的小分子和高性能的窄帶隙材料。在小分子DPPEZnP-TEH的含量在10%到70%之間時都觀察到了三元共混體系相對于二元參比器件能量轉(zhuǎn)換效率的提升。這種高成分容忍性在三元共混體系中是獨特的并且能量效率超過11%在三元共混體系中也是僅有的一例。DPPEZnP-TEH的引入降低了器件中的復(fù)合并且提高了載流子的分離和傳輸,從而極大地提高了短路電流密度和填充因子。我們的結(jié)果清晰地展示出光電導(dǎo)陰極界面在三元共混有機太陽電池這一新興領(lǐng)域的巨大潛力。
[Abstract]:Organic solar cells are being paid more and more attention as a potential technology for obtaining solar energy at low cost. The highest energy conversion efficiency of organic solar cells in the laboratory has already exceeded 10%, which has reached the minimum requirement for efficiency in industrial production. But the optimal conditions for the preparation of organic solar cells in the laboratory are the best. It is not suitable for industrial production. The most important part of this phenomenon is that the thickness of the functional layers of the organic solar cells is very thin at present, especially the interface is only 2~30 nm, and the thin and uniform film can not be produced on large scale by printing technology. In order to solve this problem, this theory is discussed. This paper presents the concept of photoconductive interface and systematically studies the mechanism of this kind of interface to improve the performance of organic solar cells and the effect of interface thickness on the performance of the device. It provides experimental and theoretical basis for the design of high performance interface films suitable for industrial production. The work of this paper is divided into four parts. We use the ZnO/PBI-H double layer interface to prepare the cathode interface and successfully used in organic solar cell devices. The excellent energy conversion efficiency.PBI-H can effectively reduce the power culvert of ZnO and improve the contact between the Zn O and the active layer. Especially after the heat, the N-Zn chemical bond between Zn O and PBI-H increases. It is better to combine the double layer interface, which is beneficial to the transmission of the electron from PBI-H to the ZnO, eventually making the devices based on the PTB7:PC71BM active layer get up to 9.43% energy conversion efficiency. In addition, our double layer interface structure cathode interface is suitable for different material systems, and the energy conversion efficiency of P3HT:PC61BM is raised from 3.51% to 4.78%. The energy conversion efficiency of PTB7-Th:PC71BM is increased from 8.33% to 10.31%. In the second part, we use the organic dye molecules doped ZnO to prepare the photoconductive cathode interface and apply it to the inverted organic solar cell, which greatly improves the energy conversion efficiency of the devices. The doping concentration of organic dye molecules is only 1%, so this interface is the interface of the organic dye molecules. Only a very small amount of photon is absorbed, but it has very high conductivity. Taking ZnO:PBI-H film as an example, the conductivity of an organic solar cell is 4.5 x 10-3S/m under the condition of an organic solar cell test, and the doping of PBI-H can improve the electron mobility of the ZnO film and reduce its function function. The device based on the ZnO:PBI-H photoconductive interface has obtained a high of 10.5% energy. The conversion efficiency (active layer PTB7-Th:PC71BM) is more important because, due to the high conductivity of the ZnO:PBI-H photoconductivity interface, the change of the device performance is very small when the thickness of the 30~60 nm changes. The insensitive interface of this thickness is very important for the future industrial production. We use the other dye molecule TCPP doped ZnO to obtain it. The photoconductive interface has proved that the photoconductive cathode interface can be doped by a variety of organic dye molecules. In the third part, we doped the water-soluble imide derivative PBI-Py into ZnO, and developed a photoconductive cathode interface for the processing of aqueous solution. The advantages, including a significant increase in electrical conductivity and electron mobility and the reduction of work functions, are the essential properties of a high performance cathode interface. These new mechanisms for improving charge transfer properties and work letters will lead to the development of a new generation of interface materials. The high conductivity of the ZnO:PBI-Py photoconductive cathode interface. The high mobility of the active layer, even when the thickness of the cathode interface and the active layer reached 100 nm and 300 nm respectively, the inverted organic solar cell based on the ZnO:PBI-Py photoconductive cathode interface and the FBT-Th4 (1,4): PC71BM active layer still showed more than 10% average energy conversion efficiency. Our results clearly show the environmentally friendly processing. In the fourth part of the work, we extend the application of the photoconductive cathode interface to the three element blend system and build a new high efficiency three element blend system. Small molecules of infrared absorption and high performance narrow band gap materials. The energy conversion efficiency of the three element blends relative to the two element ratio is observed at a content of 10% to 70% of the small molecule DPPEZnP-TEH. This high component tolerance is unique in the three element blend and the energy efficiency is more than 11% in three Yuan blending. The only example in the system is the introduction of.DPPEZnP-TEH, which reduces the composition of the device and improves the separation and transmission of the carrier, thus greatly improving the short circuit current density and filling factor. Our results clearly show the great potential of the photoconductive cathode interface in the emerging field of three yuan blends of the machine solar cell.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TQ132.41;TM914.4

【相似文獻】

相關(guān)期刊論文 前5條

1 化信;;國家納米科學(xué)中心研發(fā)效率達7.8%的有機太陽電池給體材料[J];化工新型材料;2013年09期

2 馬廷麗;;新型有機太陽電池塑料薄膜化的研究進展[J];化學(xué)進展;2006年Z1期

3 吳振武;劉揚;韋尚江;黃訓(xùn);張東煜;周明;陳立桅;馬昌期;王華;;聚(3-己基噻吩)作為光譜增感層在有機太陽電池光譜響應(yīng)增強中的應(yīng)用[J];物理化學(xué)學(xué)報;2013年08期

4 倪婷;鄒凡;蔣玉蓉;楊盛誼;;用CdSe/ZnS量子點提高體異質(zhì)結(jié)有機太陽電池的效率[J];物理化學(xué)學(xué)報;2014年03期

5 ;[J];;年期

相關(guān)會議論文 前4條

1 葉峰;楊小牛;;數(shù)值模擬研究大面積有機太陽電池[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第25分會:有機光伏[C];2014年

2 詹傳郎;;傒二酰亞胺基有機太陽電池[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第21分會:光化學(xué)[C];2014年

3 楊曦;劉文清;張瑩瑩;梁濤;徐明生;陳紅征;;基于金納米顆粒修飾二硫化鉬片層的等離子體增強有機太陽電池[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第25分會:有機光伏[C];2014年

4 楊曦;傅偉飛;劉文清;徐明生;陳紅征;;二硫化鉬片層晶體結(jié)構(gòu)的調(diào)控及其在有機太陽電池中的應(yīng)用[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第25分會:有機光伏[C];2014年

相關(guān)重要報紙文章 前1條

1 于洋 張兆軍;新型高效有機太陽電池研究取得重要進展[N];科技日報;2014年

相關(guān)博士學(xué)位論文 前3條

1 朱永祥;采用萜類溶劑制作有機光電器件活性層的研究[D];華南理工大學(xué);2015年

2 輦理;基于染料分子摻雜ZnO的光電導(dǎo)陰極界面研究[D];華南理工大學(xué);2016年

3 仲成美;有機太陽電池光生載流子動力學(xué)過程的瞬態(tài)光電導(dǎo)以及瞬態(tài)光致吸收光譜研究[D];華南理工大學(xué);2014年

相關(guān)碩士學(xué)位論文 前8條

1 孔偉光;強偶極矩分子層在有機太陽電池中的應(yīng)用[D];河北大學(xué);2012年

2 孫麗;有機太陽電池光學(xué)性能分析[D];西安電子科技大學(xué);2014年

3 孟慶蕾;提高有機太陽電池中空穴輸出效率方法的研究[D];江南大學(xué);2010年

4 梁亞敏;有機太陽電池的制備及其相關(guān)性能的研究[D];華南理工大學(xué);2014年

5 楊文豪;ATO透明導(dǎo)電薄膜的性能及其在有機太陽電池中的應(yīng)用研究[D];河南大學(xué);2013年

6 詹真;電極修飾對rubrene/C_(70)有機太陽電池性能的改善[D];暨南大學(xué);2013年

7 姚明;功能材料的摻雜對基于P3HT/PCBM有機太陽電池性能影響的研究[D];河北大學(xué);2013年

8 夏選;具有近紅外吸收特性的有機太陽電池的制備和研究[D];長春理工大學(xué);2014年

,

本文編號:2119954

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2119954.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1845d***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
97人摸人人澡人人人超碰| 亚洲一区二区三区av高清| 国产高清视频一区不卡| 国产极品粉嫩尤物一区二区| 一区二区欧美另类稀缺| 色哟哟哟在线观看视频| 丰满少妇高潮一区二区| 日韩视频在线观看成人| 久久精品国产熟女精品| 日本人妻精品中文字幕不卡乱码 | 最近中文字幕高清中文字幕无| 国产熟女一区二区不卡| 亚洲一区二区三区熟女少妇| 精品一区二区三区三级视频| 日系韩系还是欧美久久| 欧美日韩精品人妻二区三区| 亚洲高清一区二区高清| 日韩精品综合免费视频| 成人精品网一区二区三区| 国产av精品一区二区| 国产一级内片内射免费看| 国产精品白丝久久av| 高清亚洲精品中文字幕乱码| 亚洲精品黄色片中文字幕 | 国产美女精品午夜福利视频| 欧美一级不卡视频在线观看| 深夜福利欲求不满的人妻| 91在线国内在线中文字幕| 老司机精品国产在线视频| 精品欧美日韩一二三区| 国产麻豆一线二线三线| 成人午夜视频精品一区| 久久国内午夜福利直播| 99精品国产一区二区青青 | 九九热在线免费在线观看| 日本东京热加勒比一区二区| 国产色第一区不卡高清| 国产精品久久精品毛片| 五月天综合网五月天综合网| 欧美亚洲国产日韩一区二区| 老司机这里只有精品视频|