基于染料分子摻雜ZnO的光電導(dǎo)陰極界面研究
[Abstract]:Organic solar cells are being paid more and more attention as a potential technology for obtaining solar energy at low cost. The highest energy conversion efficiency of organic solar cells in the laboratory has already exceeded 10%, which has reached the minimum requirement for efficiency in industrial production. But the optimal conditions for the preparation of organic solar cells in the laboratory are the best. It is not suitable for industrial production. The most important part of this phenomenon is that the thickness of the functional layers of the organic solar cells is very thin at present, especially the interface is only 2~30 nm, and the thin and uniform film can not be produced on large scale by printing technology. In order to solve this problem, this theory is discussed. This paper presents the concept of photoconductive interface and systematically studies the mechanism of this kind of interface to improve the performance of organic solar cells and the effect of interface thickness on the performance of the device. It provides experimental and theoretical basis for the design of high performance interface films suitable for industrial production. The work of this paper is divided into four parts. We use the ZnO/PBI-H double layer interface to prepare the cathode interface and successfully used in organic solar cell devices. The excellent energy conversion efficiency.PBI-H can effectively reduce the power culvert of ZnO and improve the contact between the Zn O and the active layer. Especially after the heat, the N-Zn chemical bond between Zn O and PBI-H increases. It is better to combine the double layer interface, which is beneficial to the transmission of the electron from PBI-H to the ZnO, eventually making the devices based on the PTB7:PC71BM active layer get up to 9.43% energy conversion efficiency. In addition, our double layer interface structure cathode interface is suitable for different material systems, and the energy conversion efficiency of P3HT:PC61BM is raised from 3.51% to 4.78%. The energy conversion efficiency of PTB7-Th:PC71BM is increased from 8.33% to 10.31%. In the second part, we use the organic dye molecules doped ZnO to prepare the photoconductive cathode interface and apply it to the inverted organic solar cell, which greatly improves the energy conversion efficiency of the devices. The doping concentration of organic dye molecules is only 1%, so this interface is the interface of the organic dye molecules. Only a very small amount of photon is absorbed, but it has very high conductivity. Taking ZnO:PBI-H film as an example, the conductivity of an organic solar cell is 4.5 x 10-3S/m under the condition of an organic solar cell test, and the doping of PBI-H can improve the electron mobility of the ZnO film and reduce its function function. The device based on the ZnO:PBI-H photoconductive interface has obtained a high of 10.5% energy. The conversion efficiency (active layer PTB7-Th:PC71BM) is more important because, due to the high conductivity of the ZnO:PBI-H photoconductivity interface, the change of the device performance is very small when the thickness of the 30~60 nm changes. The insensitive interface of this thickness is very important for the future industrial production. We use the other dye molecule TCPP doped ZnO to obtain it. The photoconductive interface has proved that the photoconductive cathode interface can be doped by a variety of organic dye molecules. In the third part, we doped the water-soluble imide derivative PBI-Py into ZnO, and developed a photoconductive cathode interface for the processing of aqueous solution. The advantages, including a significant increase in electrical conductivity and electron mobility and the reduction of work functions, are the essential properties of a high performance cathode interface. These new mechanisms for improving charge transfer properties and work letters will lead to the development of a new generation of interface materials. The high conductivity of the ZnO:PBI-Py photoconductive cathode interface. The high mobility of the active layer, even when the thickness of the cathode interface and the active layer reached 100 nm and 300 nm respectively, the inverted organic solar cell based on the ZnO:PBI-Py photoconductive cathode interface and the FBT-Th4 (1,4): PC71BM active layer still showed more than 10% average energy conversion efficiency. Our results clearly show the environmentally friendly processing. In the fourth part of the work, we extend the application of the photoconductive cathode interface to the three element blend system and build a new high efficiency three element blend system. Small molecules of infrared absorption and high performance narrow band gap materials. The energy conversion efficiency of the three element blends relative to the two element ratio is observed at a content of 10% to 70% of the small molecule DPPEZnP-TEH. This high component tolerance is unique in the three element blend and the energy efficiency is more than 11% in three Yuan blending. The only example in the system is the introduction of.DPPEZnP-TEH, which reduces the composition of the device and improves the separation and transmission of the carrier, thus greatly improving the short circuit current density and filling factor. Our results clearly show the great potential of the photoconductive cathode interface in the emerging field of three yuan blends of the machine solar cell.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TQ132.41;TM914.4
【相似文獻】
相關(guān)期刊論文 前5條
1 化信;;國家納米科學(xué)中心研發(fā)效率達7.8%的有機太陽電池給體材料[J];化工新型材料;2013年09期
2 馬廷麗;;新型有機太陽電池塑料薄膜化的研究進展[J];化學(xué)進展;2006年Z1期
3 吳振武;劉揚;韋尚江;黃訓(xùn);張東煜;周明;陳立桅;馬昌期;王華;;聚(3-己基噻吩)作為光譜增感層在有機太陽電池光譜響應(yīng)增強中的應(yīng)用[J];物理化學(xué)學(xué)報;2013年08期
4 倪婷;鄒凡;蔣玉蓉;楊盛誼;;用CdSe/ZnS量子點提高體異質(zhì)結(jié)有機太陽電池的效率[J];物理化學(xué)學(xué)報;2014年03期
5 ;[J];;年期
相關(guān)會議論文 前4條
1 葉峰;楊小牛;;數(shù)值模擬研究大面積有機太陽電池[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第25分會:有機光伏[C];2014年
2 詹傳郎;;傒二酰亞胺基有機太陽電池[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第21分會:光化學(xué)[C];2014年
3 楊曦;劉文清;張瑩瑩;梁濤;徐明生;陳紅征;;基于金納米顆粒修飾二硫化鉬片層的等離子體增強有機太陽電池[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第25分會:有機光伏[C];2014年
4 楊曦;傅偉飛;劉文清;徐明生;陳紅征;;二硫化鉬片層晶體結(jié)構(gòu)的調(diào)控及其在有機太陽電池中的應(yīng)用[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第25分會:有機光伏[C];2014年
相關(guān)重要報紙文章 前1條
1 于洋 張兆軍;新型高效有機太陽電池研究取得重要進展[N];科技日報;2014年
相關(guān)博士學(xué)位論文 前3條
1 朱永祥;采用萜類溶劑制作有機光電器件活性層的研究[D];華南理工大學(xué);2015年
2 輦理;基于染料分子摻雜ZnO的光電導(dǎo)陰極界面研究[D];華南理工大學(xué);2016年
3 仲成美;有機太陽電池光生載流子動力學(xué)過程的瞬態(tài)光電導(dǎo)以及瞬態(tài)光致吸收光譜研究[D];華南理工大學(xué);2014年
相關(guān)碩士學(xué)位論文 前8條
1 孔偉光;強偶極矩分子層在有機太陽電池中的應(yīng)用[D];河北大學(xué);2012年
2 孫麗;有機太陽電池光學(xué)性能分析[D];西安電子科技大學(xué);2014年
3 孟慶蕾;提高有機太陽電池中空穴輸出效率方法的研究[D];江南大學(xué);2010年
4 梁亞敏;有機太陽電池的制備及其相關(guān)性能的研究[D];華南理工大學(xué);2014年
5 楊文豪;ATO透明導(dǎo)電薄膜的性能及其在有機太陽電池中的應(yīng)用研究[D];河南大學(xué);2013年
6 詹真;電極修飾對rubrene/C_(70)有機太陽電池性能的改善[D];暨南大學(xué);2013年
7 姚明;功能材料的摻雜對基于P3HT/PCBM有機太陽電池性能影響的研究[D];河北大學(xué);2013年
8 夏選;具有近紅外吸收特性的有機太陽電池的制備和研究[D];長春理工大學(xué);2014年
,本文編號:2119954
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2119954.html