湍流條件下氣液界面?zhèn)髻|(zhì)機(jī)理研究
本文選題:界面?zhèn)髻|(zhì) + 抵達(dá)頻率密度; 參考:《湘潭大學(xué)》2015年碩士論文
【摘要】:目前關(guān)于氣液兩相界面?zhèn)髻|(zhì)的理論研究尚不成熟和完善。在實(shí)際工業(yè)生產(chǎn)過程中,許多單元設(shè)備的傳質(zhì)效率還較低,難以滿足生產(chǎn)需求,亟待優(yōu)化升級(jí)。因此研究界面?zhèn)髻|(zhì)機(jī)理并構(gòu)建相應(yīng)的理論模型對(duì)于指導(dǎo)單元設(shè)備的設(shè)計(jì)和優(yōu)化、強(qiáng)化傳質(zhì)效率具有重要意義。本文基于現(xiàn)有模型存在的不足,將采用現(xiàn)象學(xué)方法和湍流結(jié)構(gòu)理論,構(gòu)建基于寬能譜分布、隨機(jī)界面作用的流體微元或漩渦傳質(zhì)理論模型。本文分兩個(gè)部分。第一部分為氣-液表面?zhèn)髻|(zhì)機(jī)理模型的構(gòu)建。傳統(tǒng)的傳質(zhì)系數(shù)模型主要是基于滲透理論或表面更新理論的改進(jìn)模型。這些模型考慮傳質(zhì)過程是由非穩(wěn)態(tài)分子擴(kuò)散控制。而基于經(jīng)典的大渦和小渦傳質(zhì)模型預(yù)先假定傳質(zhì)由某波段能譜的流體結(jié)構(gòu)控制。本文則在全能譜的范圍內(nèi)考慮不同尺度流體微元結(jié)構(gòu)對(duì)傳質(zhì)的貢獻(xiàn),因此上述假設(shè)不再需要。本文重點(diǎn)研究了氣泡界面?zhèn)髻|(zhì)過程,采用特征線法以及濃度梯度薄層近似,推導(dǎo)出了一個(gè)新的液相側(cè)傳質(zhì)系數(shù)模型。模型的推導(dǎo)結(jié)合了非穩(wěn)態(tài)濃度對(duì)流擴(kuò)散方程以及氣泡與流體微元的相互作用。該模型考慮了氣泡與旋渦之間的有效相對(duì)運(yùn)動(dòng)才會(huì)促使漩渦與氣泡表面接觸,并基于隨機(jī)基礎(chǔ)作用的概念從理論上推導(dǎo)了不同尺度漩渦抵達(dá)表面的頻率密度分布。該抵達(dá)頻率密度分布可以用來理論解釋全能譜各區(qū)波段的流體微元結(jié)構(gòu)對(duì)傳質(zhì)系數(shù)貢獻(xiàn)的差異性。此外,本文還考慮了氣泡尺寸、氣泡變形與振動(dòng)、以及旋渦數(shù)密度分布對(duì)傳質(zhì)影響。模型預(yù)測(cè)的結(jié)果與文獻(xiàn)報(bào)道的實(shí)驗(yàn)數(shù)據(jù)吻合很好。第二部分首先采用數(shù)值方法驗(yàn)證了特征線以及濃度梯度薄層近似的合理性(濃度梯度層厚度整體上低于漩渦尺寸的3.18%),并證明了即使在單渦的傳質(zhì)過程也應(yīng)看成是非穩(wěn)態(tài)過程。數(shù)值計(jì)算表明:相同界面接觸時(shí)間,處于耗散區(qū)的漩渦能帶走更多的溶質(zhì),傳質(zhì)效率更高。通過推導(dǎo)的LBM模型數(shù)值求解了非穩(wěn)態(tài)的濃度方程,與本文解析模型相比較,發(fā)現(xiàn)界面液相側(cè)的切向分子擴(kuò)散對(duì)傳質(zhì)影響較弱。當(dāng)忽略切向分子擴(kuò)散,傳質(zhì)系數(shù)的誤差低于1%。表明忽略該擴(kuò)散具有一定合理性。
[Abstract]:At present, the theoretical study on gas-liquid two-phase interface mass transfer is not mature and perfect. In the actual industrial production process, the mass transfer efficiency of many unit equipment is still low, it is difficult to meet the production demand, so it is urgent to optimize and upgrade. Therefore, it is of great significance to study the mechanism of mass transfer at the interface and to construct the corresponding theoretical model for guiding the design and optimization of unit equipment and enhancing the efficiency of mass transfer. In this paper, based on the shortcomings of the existing models, the theoretical model of fluid micro-element or vortex mass transfer based on the wide spectrum distribution and random interface action will be constructed by using the phenomenological method and the turbulent structure theory. This paper is divided into two parts. The first part is the construction of gas-liquid surface mass transfer mechanism model. The traditional model of mass transfer coefficient is based on permeability theory or surface renewal theory. These models consider that mass transfer processes are controlled by unsteady molecular diffusion. Based on the classical mass transfer models of large and small vortices, it is assumed that mass transfer is controlled by the fluid structure of a certain band energy spectrum. In this paper, the contribution of fluid micro-element structures of different scales to mass transfer is considered in the range of the omnipotent spectrum, so the above hypothesis is no longer necessary. In this paper, the mass transfer process at the bubble interface is mainly studied. A new model of liquid side mass transfer coefficient is derived by using the characteristic line method and the concentration gradient thin layer approximation. The model combines the convection-diffusion equation of unsteady concentration and the interaction between bubble and fluid element. The effective relative motion between bubble and vortex is considered in this model to promote the contact between vortex and bubble surface, and based on the concept of random fundamental action, the frequency density distribution of vortex arriving at different scales is deduced theoretically. The density distribution of the arrival frequency can be used to explain the difference of the contribution of the fluid microelement structure to the mass transfer coefficient in each region of the omnipotent spectrum. In addition, the effects of bubble size, bubble deformation and vibration, and vortex number density distribution on mass transfer are also considered. The results of the model prediction are in good agreement with the experimental data reported in the literature. In the second part, numerical method is used to verify the rationality of the characteristic line and the density gradient thin layer approximation (the thickness of the concentration gradient layer is lower than 3.18% of the size of the vortex as a whole), and it is proved that even the mass transfer process of the single vortex should be regarded as an unsteady process. The numerical results show that the vortex in the dissipative region can take more solutes away and the mass transfer efficiency is higher at the same interface contact time. The unsteady concentration equation is solved numerically by the derived LBM model. Compared with the analytical model in this paper, it is found that the effect of tangential molecular diffusion on mass transfer at the liquid side of the interface is weak. When tangential molecular diffusion is ignored, the error of mass transfer coefficient is less than 1. It shows that it is reasonable to ignore the diffusion.
【學(xué)位授予單位】:湘潭大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TQ021.4
【共引文獻(xiàn)】
相關(guān)期刊論文 前7條
1 丁程兵;陳遷喬;鐘秦;;三種湍流模型下攪拌釜內(nèi)氣含率特性的模擬[J];化工進(jìn)展;2013年11期
2 張慶文;蔡子金;李軍慶;石東升;洪厚勝;;自吸式反應(yīng)器氣液傳質(zhì)實(shí)驗(yàn)研究和CFD模擬[J];化學(xué)工程;2014年02期
3 李倩;程景才;楊超;毛在砂;;群體平衡方程在攪拌反應(yīng)器模擬中的應(yīng)用[J];化工學(xué)報(bào);2014年05期
4 張慶文;蔡子金;李軍慶;石東升;洪厚勝;;利用CFD模擬技術(shù)改造60 m~3木聚糖酶發(fā)酵罐[J];食品與機(jī)械;2013年05期
5 蔡子金;李軍慶;張慶文;洪厚勝;;CFD在攪拌罐性能研究和生化過程放大中的應(yīng)用[J];食品與機(jī)械;2013年06期
6 李凱;鐘誠文;;A multiple-relaxation-time lattice Boltzmann method for high-speed compressible flows[J];Chinese Physics B;2015年05期
7 劉芳;施衛(wèi)平;;用格子Boltzmann方法模擬非線性熱傳導(dǎo)方程[J];應(yīng)用數(shù)學(xué)和力學(xué);2015年11期
相關(guān)博士學(xué)位論文 前8條
1 韓海鋒;氣固兩相流的高效格子Boltzmann算法設(shè)計(jì)及其直接數(shù)值模擬[D];華中科技大學(xué);2012年
2 周志瑋;動(dòng)物細(xì)胞生物反應(yīng)器關(guān)鍵技術(shù)研究及其結(jié)構(gòu)優(yōu)化[D];哈爾濱工業(yè)大學(xué);2012年
3 謝明輝;多層攪拌式生物反應(yīng)器內(nèi)溶液流變性質(zhì)對(duì)流場(chǎng)特性影響的研究[D];華東理工大學(xué);2013年
4 韓海鋒;氣固兩相流的高效格子Boltzmann算法設(shè)計(jì)及其直接數(shù)值模擬[D];華中科技大學(xué);2013年
5 王振元;加氫反應(yīng)器內(nèi)氣液兩相流體的分布與混合裝置研究[D];華東理工大學(xué);2014年
6 陳俊輝;基于格子Boltzmann方法的個(gè)體化顱內(nèi)動(dòng)脈瘤幾何重建及其數(shù)值模擬[D];華中科技大學(xué);2014年
7 卓叢山;格子Boltzmann方法的過濾矩模型研究[D];西北工業(yè)大學(xué);2014年
8 邢楚填;鼓泡床反應(yīng)器實(shí)驗(yàn)研究及CFD-PBM耦合模型數(shù)值模擬[D];清華大學(xué);2014年
相關(guān)碩士學(xué)位論文 前2條
1 丁程兵;多層槳攪拌釜內(nèi)氣含率特性的實(shí)驗(yàn)研究與數(shù)值模擬[D];南京理工大學(xué);2014年
2 陳猛;熱管攪拌釜數(shù)值模擬及結(jié)構(gòu)優(yōu)化[D];鄭州大學(xué);2014年
,本文編號(hào):2113240
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2113240.html