CdS基半導(dǎo)體光催化劑的光解水產(chǎn)氫活性和光生電荷特性的研究
本文選題:硫化鎘 + 非貴金屬助催化劑; 參考:《吉林大學(xué)》2015年博士論文
【摘要】:日益嚴(yán)重的能源危機(jī),以及化石能源的消耗所造成的環(huán)境污染問題促使人類尋找新型清潔的能源來替代化石能源。氫能作為一種高效,綠色無污染的能源被認(rèn)為是最有可能取代化石能源的新型能源之一。在眾多產(chǎn)生氫氣的方法中,利用取之不盡用之不竭的太陽光光催化產(chǎn)生氫氣成為目前的研究重點(diǎn)。在光催化反應(yīng)中起到將太陽能轉(zhuǎn)化為氫能的中間媒介作用的是半導(dǎo)體光催化劑。而大部分的半導(dǎo)體光催化劑,例如TiO2, SrTiO3,只能利用紫外光。CdS是典型的II-VI族半導(dǎo)體光催化劑。CdS的導(dǎo)帶電勢(shì)要高于質(zhì)子還原產(chǎn)生氫氣的電勢(shì),可以用于光催化產(chǎn)氫。CdS的帶隙為2.4eV,能夠利用可見光產(chǎn)氫。但是CdS存的自身的一些缺陷限制了CdS在光催化產(chǎn)氫方面的應(yīng)用。一方面CdS本身光生電荷復(fù)合的速率較快,光催化產(chǎn)生氫氣的活性較低。因此為了提高CdS光催化產(chǎn)氫的活性,就需要在CdS的表面負(fù)載貴金屬,,例如Pt,提高其光催化產(chǎn)氫活性。但是貴金屬價(jià)格昂貴。CdS最為半導(dǎo)體光催化劑的另一個(gè)缺點(diǎn)是易發(fā)生光腐蝕。通常需要加入電子犧牲劑來消耗CdS的空穴,防止CdS所產(chǎn)生的空穴還原S2-,分解CdS。因此本論文的目標(biāo)是尋找替代貴金屬Pt的助催化劑(CuS,Co(OH)2)和構(gòu)筑Z-型光催化體系,提高CdS電荷的分離效率和CdS光催化產(chǎn)氫的活性。 我們知道光催化反應(yīng)是遷移到表面的光生電子在表面發(fā)生的光催化產(chǎn)氫反應(yīng),如果能夠使更多的光生電子遷移到表面,那光催化產(chǎn)氫活性必定明顯提高。因此對(duì)于表面光生電荷的傳輸特征的研究十分必要。本論文的另一個(gè)目標(biāo)是利用表面光電壓技術(shù)研究非貴金屬助催化劑在表面所起的作用和對(duì)主體光催化半導(dǎo)體催化劑光生電荷行為的影響以及Z-型體系的構(gòu)筑對(duì)光生電荷行為的影響。為構(gòu)筑高效的,經(jīng)濟(jì)的光催化產(chǎn)氫體系提供理論基礎(chǔ)。具體的工作如下: 1.采用簡(jiǎn)單的離子交換的方法合成了CuS/CdS, CuS/Zn0.8Cd0.2S光催化體系。場(chǎng)發(fā)射掃描電子顯微鏡(FESEM),透射電子顯微鏡(TEM)和高分辨電子顯微鏡(HRTEM)的測(cè)試結(jié)果證明CuS助催化劑成功的負(fù)載到了CdS的表面。非貴金屬助催化劑CuS提高了CdS的光催化產(chǎn)氫的活性。表面光電壓(SPV)和表面光電流(SPC)的測(cè)試結(jié)果表明CuS在CdS的表面起到捕獲光生電子的作用。為了進(jìn)一步提高產(chǎn)氫活性,我們將CuS負(fù)載到固溶體Zn0.8Cd0.2S的表面,光解水產(chǎn)氫活性進(jìn)一步提高。CuS助催化劑負(fù)載在固溶體的表面,使得SPV和TPV的光伏信號(hào)發(fā)生了反轉(zhuǎn)。進(jìn)一步證明了CuS在主體催化劑的表面起到捕獲光生電子的作用。 2.采用簡(jiǎn)單的溶劑熱和共沉淀的方法在CdS納米棒的表面負(fù)載了Co(OH)2作為助催化劑構(gòu)筑了Co(OH)2/CdS光催化體系。X-射線光電子能譜的測(cè)試結(jié)果表明負(fù)載到CdS表面的鈷元素是以Co(OH)2的形式存在。 Co(OH)2作為助催化劑明顯提高了CdS在全光譜以及可見光下光催化產(chǎn)氫的活性。表面光電壓的測(cè)試結(jié)果表明Co(OH)2在CdS的表面起到捕獲光生電子的作用,從而使得更多的光生電子累積到催化劑的表面。瞬態(tài)光電壓的測(cè)試結(jié)果表明非貴金屬助催化劑Co(OH)2的負(fù)載,提高了CdS光生電荷的分離效率,提高了CdS的光解水產(chǎn)氫的活性。測(cè)試15h后,Co(OH)2/CdS的光催化產(chǎn)氫活性并沒有明顯降低,說明Co(OH)2/CdS是相對(duì)穩(wěn)定的光催化體系。 3.模擬自然界的光合作用構(gòu)筑全固態(tài)的Z-型光催化體系CdS/WO3用于光催化產(chǎn)氫。單純的WO3沒有表現(xiàn)出光催化產(chǎn)氫活性,但是CdS負(fù)載到WO3的表面表現(xiàn)出明顯的光催化產(chǎn)氫活性,并且明顯高于單純CdS的光催化產(chǎn)氫活性。然后我們用表面光電壓技術(shù)對(duì)CdS/WO3光催化體系光生電荷特性進(jìn)行了研究。表面光電壓的測(cè)試結(jié)果表明,WO3中的光生電子與CdS中的光生空穴復(fù)合,從而使得更多的光生電子累計(jì)到CdS的表面,有利于CdS光解水產(chǎn)氫活性的提高。另一方面CdS光生電荷的分離效率提高了。
[Abstract]:The increasingly serious energy crisis, as well as the environmental pollution caused by the depletion of fossil fuels, has prompted human beings to search for new clean energy to replace fossil fuels. Hydrogen energy, as a highly efficient, green and pollution-free energy, is considered as one of the most likely alternative sources of fossil energy. The inexhaustible solar light catalyzed production of hydrogen has become the focus of current research. In the light of photocatalytic reaction, the intermediate medium of converting solar energy into hydrogen energy is a semiconductor photocatalyst. Most of the semiconductor photocatalysts, such as TiO2, SrTiO3, can only use ultraviolet.CdS as the typical II-VI semiconductors The conduction band of the photocatalyst.CdS is higher than the potential of the proton reduction to produce hydrogen. The band gap of the photocatalytic hydrogen producing.CdS is 2.4eV and can be used to produce hydrogen with visible light. However, some of the defects of the CdS deposit limit the application of CdS in the photocatalytic hydrogen production. On the one hand, the rate of CdS itself is faster, and the photocatalytic production is produced. The activity of hydrogen is low, so in order to improve the activity of CdS photocatalytic hydrogen production, it is necessary to load precious metals on the surface of CdS, such as Pt, to improve its photocatalytic activity of hydrogen production. However, the other disadvantage of the expensive metal.CdS is that the other disadvantage of the semiconductor photocatalyst is easy to produce light corrosion. The electronic sacrificial agent is usually required to consume CdS. Holes, which prevent the holes produced by CdS to restore the S2-, decompose the CdS., so the aim of this paper is to find the co catalyst (CuS, Co (OH) 2) instead of the noble metal Pt, and to construct the Z- type photocatalytic system to improve the separation efficiency of CdS charge and the activity of the CdS photocatalytic hydrogen production.
We know that photocatalytic reaction is a photocatalytic hydrogen producing reaction on the surface of photogenerated electrons that migrate to the surface. If more photoelectrons are transferred to the surface, the photocatalytic activity of hydrogen production must be improved obviously. Therefore, it is necessary to study the characteristics of the transmission of surface photogenerated charge. The surface photovoltage technique studies the effect of non precious metal cocatalysts on the surface and the effect on the photoinduced charge behavior of the main photocatalyst and the structure of the Z- type system on the photoinduced charge behavior. It provides a theoretical basis for the construction of efficient and economical photocatalytic hydrogen production system. The specific work is as follows:
1. a simple ion exchange method was used to synthesize the CuS/CdS, CuS/Zn0.8Cd0.2S photocatalytic system. Field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high resolution electron microscope (HRTEM) test results proved that the CuS Co catalyst was successfully loaded onto the surface of CdS. The non noble metal co catalyst CuS increased CdS. The test results of photocatalytic hydrogen production. The test results of surface photovoltage (SPV) and surface photocurrent (SPC) show that CuS plays a role in the capture of photoelectron on the surface of CdS. In order to further improve the activity of hydrogen production, we load the CuS to the surface of the solid solution Zn0.8Cd0.2S, and the photodissociation of aquatic hydrogen activity further improves the.CuS cocatalyst load in the solid solution. The surface makes the photovoltaic signal of SPV and TPV reverse, further proving that CuS plays the role of capturing photoelectrons on the surface of the main catalyst.
2. a simple solvent heat and coprecipitation method was used to load the Co (OH) 2 on the surface of the CdS nanorods as a co catalyst to construct the.X- ray photoelectron spectroscopy of the Co (OH) 2/CdS photocatalyst. The results showed that the cobalt element loaded to the CdS surface was in the form of Co (OH) 2. Co (OH) 2 was obviously improved in all light as a co catalyst. The test results of the surface photovoltage show that Co (OH) 2 plays a role in the capture of photogenerated electrons on the surface of CdS, thus making more photoelectrons accumulated on the surface of the catalyst. The transient photovoltage test results show that the load of Co (OH) 2 of the non noble metal co catalyst improves the CdS photoelectricity. The separation efficiency of charge increases the activity of CdS's photolysis of aquatic hydrogen. After testing 15h, the activity of photocatalytic hydrogen production of Co (OH) 2/CdS has not been significantly reduced, indicating that Co (OH) 2/CdS is a relatively stable photocatalytic system.
3. simulates the photosynthesis of the nature to construct the solid state Z- photocatalytic system CdS/WO3 for the photocatalytic hydrogen production. The pure WO3 does not show the photocatalytic hydrogen production activity, but the CdS load to WO3 shows obvious photocatalytic hydrogen production activity, and is obviously higher than the photocatalytic hydrogen production activity of pure CdS. Then we use surface optoelectronics. The characteristics of the photoinduced charge in the CdS/WO3 photocatalytic system were studied by pressure technique. The test results of surface photovoltage showed that the photogenerated electrons in the WO3 were combined with the photogenerated holes in the CdS, thus making more photoelectrons accumulated on the surface of the CdS, which was beneficial to the increase of the activity of the aquatic hydrogen in the photolysis of CdS. On the other hand, the separation efficiency of the CdS light generated charge was on the other hand. It's improved.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:O643.36;TQ116.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 林明,任南琪,王愛杰,馬放;高效產(chǎn)氫發(fā)酵細(xì)菌在不同氣相條件下產(chǎn)氫[J];中國(guó)沼氣;2002年02期
2 林明,任南琪,王愛杰,張穎,王相晶,馬放;幾種金屬離子對(duì)高效產(chǎn)氫細(xì)菌產(chǎn)氫能力的促進(jìn)作用[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2003年02期
3 張志民;金美芳;虞星炬;張衛(wèi);;固定化亞心形扁藻光解水產(chǎn)氫研究[J];化工學(xué)報(bào);2004年S1期
4 李永峰,任南琪,楊傳平,胡立杰,鄭國(guó)香;一株高效產(chǎn)氫產(chǎn)酸細(xì)菌的鑒定與產(chǎn)氫特性[J];中國(guó)環(huán)境科學(xué);2005年02期
5 鄭先君,陳志軍,魏麗芳,?℃,謝冰;不同底物種類對(duì)厭氧發(fā)酵產(chǎn)氫的影響[J];河南化工;2005年07期
6 賈立娜,張栩,譚天偉,施定基;谷氨酸廢液培養(yǎng)萊茵衣藻的產(chǎn)氫研究[J];生物加工過程;2005年01期
7 劉飛;方柏山;;微生物產(chǎn)氫機(jī)理的研究進(jìn)展[J];工業(yè)微生物;2007年03期
8 陸瑋;;產(chǎn)氫—產(chǎn)酸發(fā)酵微生物群落生態(tài)學(xué)探究[J];科技經(jīng)濟(jì)市場(chǎng);2007年04期
9 張全國(guó);師玉忠;張軍合;楊群發(fā);周磊;;太陽光譜對(duì)光合細(xì)菌生長(zhǎng)及產(chǎn)氫特性的影響研究[J];太陽能學(xué)報(bào);2007年10期
10 張全國(guó);荊艷艷;周雪花;李鵬鵬;尤希鳳;;吸附法固定光合細(xì)菌技術(shù)產(chǎn)氫能力的研究[J];農(nóng)業(yè)工程學(xué)報(bào);2008年09期
相關(guān)會(huì)議論文 前10條
1 吳薛明;申寧;何冰芳;;活性污泥厭氧發(fā)酵產(chǎn)氫能力的研究[A];第一屆全國(guó)化學(xué)工程與生物化工年會(huì)論文摘要集(下)[C];2004年
2 康鑄慧;王磊;周琪;;不產(chǎn)氧光合細(xì)菌Rhodobacter Sphaeroides產(chǎn)氫影響因子的實(shí)驗(yàn)研究[A];2005中國(guó)可持續(xù)發(fā)展論壇——中國(guó)可持續(xù)發(fā)展研究會(huì)2005年學(xué)術(shù)年會(huì)論文集(下冊(cè))[C];2005年
3 賈立娜;張栩;譚天偉;;葡萄糖對(duì)萊茵衣藻的產(chǎn)氫影響研究[A];2005年中國(guó)生物質(zhì)能技術(shù)與可持續(xù)發(fā)展研討會(huì)論文集[C];2005年
4 郭禎;陳兆安;虞星炬;金美芳;劉遠(yuǎn);張衛(wèi);;不同培養(yǎng)基培養(yǎng)的亞心形扁藻直接光照產(chǎn)氫[A];第七屆全國(guó)氫能學(xué)術(shù)會(huì)議論文集[C];2006年
5 劉爽;;不同原料厭氧暗發(fā)酵產(chǎn)氫特性研究[A];中國(guó)農(nóng)業(yè)工程學(xué)會(huì)2011年學(xué)術(shù)年會(huì)(CSAE 2011)論文摘要集[C];2011年
6 李建政;任南琪;秦智;;有機(jī)廢水產(chǎn)酸發(fā)酵典型類型的產(chǎn)氫能力[A];第七屆全國(guó)氫能學(xué)術(shù)會(huì)議論文集[C];2006年
7 王占青;劉U
本文編號(hào):2070997
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2070997.html