二硝基甲苯加氫反應(yīng)器的數(shù)值模擬與優(yōu)化
本文選題:自吸式反應(yīng)器 + 計(jì)算流體力學(xué); 參考:《青島科技大學(xué)》2017年碩士論文
【摘要】:自吸式反應(yīng)器因無(wú)需外加壓縮機(jī),具有能耗小等優(yōu)勢(shì),在加氫等工業(yè)中應(yīng)用越來(lái)越廣泛。近年來(lái)通過(guò)數(shù)值模擬方法研究流體流動(dòng)和混合特性具有顯著的優(yōu)勢(shì),本文采用CFD數(shù)值模擬方法對(duì)自吸式二硝基甲苯加氫反應(yīng)釜進(jìn)行優(yōu)化研究,為反應(yīng)器的設(shè)計(jì)與優(yōu)化提供重要參考。主要研究?jī)?nèi)容和結(jié)果如下:(1)本文對(duì)不同的湍流模型和其他CFD模型參數(shù)進(jìn)行應(yīng)用,采用模擬結(jié)果與實(shí)驗(yàn)數(shù)據(jù)對(duì)比的方法來(lái)驗(yàn)證它們的準(zhǔn)確性。通過(guò)對(duì)Standard k-ε湍流模型、RNG k-ε湍流模型和Realizable k-ε湍流模型的驗(yàn)證,最后選擇了RNG k-ε湍流模型來(lái)進(jìn)行自吸反應(yīng)釜的湍流計(jì)算。通過(guò)對(duì)氣液、固液、液液兩相模擬方法的驗(yàn)證,最后確定了兩相模擬的適用模型為:穩(wěn)態(tài)計(jì)算,使用多重參考系法模擬槳葉區(qū)的旋轉(zhuǎn),壓力和速度的耦合采用SIMPLE算法,采用二階迎風(fēng)差分格式,兩相模型為歐拉模型,兩相的曳力模型選用Gidaspow模型。(2)本文對(duì)現(xiàn)有的實(shí)驗(yàn)反應(yīng)器進(jìn)行建模,采用CFD模型對(duì)其進(jìn)行模擬研究,為反應(yīng)器的優(yōu)化設(shè)計(jì)提供依據(jù)。主要從自吸槳葉類(lèi)型、槳葉直徑、槳葉距釜底距離,筒體結(jié)構(gòu),雙層槳葉組合和進(jìn)料位置等方面進(jìn)行優(yōu)化,得到反應(yīng)器優(yōu)化方案:自吸槳葉應(yīng)該采用空心槳葉;自吸槳葉直徑在(0.23~0.3)T范圍內(nèi);筒體應(yīng)該使用橢圓結(jié)構(gòu)釜底;對(duì)于雙層槳葉,下層槳葉使用PBTU 45槳,槳葉間距L在(1~1.5)D范圍內(nèi),下層槳葉直徑越大對(duì)氣體自吸越有利但不能大于上層槳葉的直徑。通過(guò)對(duì)反應(yīng)器內(nèi)的固液兩相和液液兩相進(jìn)行非穩(wěn)態(tài)模擬,確定催化劑和DNT的最佳進(jìn)料位置:催化劑顆粒的最佳進(jìn)料位置在液面下方,DNT的最佳進(jìn)料位置在上層槳葉下方。(3)本文采用幾何相似的放大方法以及自吸槳葉端線速度相等的放大準(zhǔn)則,將優(yōu)化后的反應(yīng)器放大至10 m3。通過(guò)CFD建立了包含換熱板的反應(yīng)器模型,模擬了反應(yīng)器內(nèi)氣液、固液和液液兩相的混合性能。模擬結(jié)果驗(yàn)證了放大過(guò)程的可靠性。
[Abstract]:Self-priming reactor is widely used in hydrogenation industry because of its low energy consumption and no external compressor. In recent years, numerical simulation method is used to study fluid flow and mixing characteristics. CFD numerical simulation method is used to optimize the self-priming dinitrotoluene hydrogenation reactor. It provides an important reference for the design and optimization of the reactor. The main contents and results are as follows: (1) in this paper, different turbulence models and other CFD model parameters are applied to verify their accuracy by comparing simulation results with experimental data. The RNG k- 蔚 turbulence model and the realizable k- 蔚 turbulence model are verified by the Standard k- 蔚 turbulence model. Finally, the RNG k- 蔚 turbulence model is selected to calculate the turbulence of the autogenous reactor. Through the verification of gas-liquid, solid-liquid and liquid-liquid two-phase simulation methods, the suitable model of two-phase simulation is determined as follows: steady-state calculation, simulation of rotor blade rotation using multi-reference system method, and simple algorithm for the coupling of pressure and velocity. The second order upwind difference scheme is used, the two-phase model is Euler model, and the two-phase drag model is Gidaspow model. (2) in this paper, the existing experimental reactor is modeled, and the CFD model is used to simulate it. It provides the basis for the optimal design of the reactor. From the aspects of self-priming blade type, blade diameter, blade distance from the bottom of the kettle, barrel structure, double-layer blade combination and feed position, the optimization scheme of the reactor is obtained: the self-priming blade should be hollow blade; The diameter of the self-priming blade is in the range of (0.230.3T) T; the cylinder should use the bottom of the kettle with an elliptical structure; for the bilayer blade, the lower blade uses PBTU 45 propeller, and the blade spacing L is in the range of (11.5D) D. The larger the lower blade diameter is, the more favorable the gas self-priming is, but not larger than the upper blade diameter. The unsteady state simulation of solid-liquid two-phase and liquid-liquid two-phase in the reactor was carried out. The optimal feed position of catalyst and DNT is determined: the best feed position of catalyst particle is below the liquid level and the optimal feed position of DNT is below the upper blade. (3) in this paper, the geometric similarity amplification method and the speed of self-priming blade end line are adopted. The magnification criterion of equal degree, The optimized reactor was amplified to 10 m3. A reactor model containing heat exchanger was established by CFD, and the mixing performance of gas-liquid, solid-liquid and liquid-liquid phases in the reactor was simulated. The simulation results verify the reliability of the amplification process.
【學(xué)位授予單位】:青島科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TQ246;TQ052
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉源;王爐鋼;湯利亞;;PBT攪拌器流動(dòng)特性的CFD研究[J];通用機(jī)械;2016年06期
2 徐彥鐸;李貴賢;季東;李曉明;方偉國(guó);劉揚(yáng);;DNT氫化反應(yīng)工藝和反應(yīng)器研究進(jìn)展[J];當(dāng)代化工;2013年10期
3 徐彥鐸;李曉明;;二硝基甲苯催化加氫研究進(jìn)展[J];甘肅科技;2013年08期
4 王志忠;常瑜;;二硝基甲苯制備二氨基甲苯和催化劑的研究進(jìn)展[J];化工進(jìn)展;2012年S2期
5 溫佳文;石東升;宋曉麗;張慶文;洪厚勝;;自吸式反應(yīng)器功率消耗與氣含率的研究進(jìn)展[J];食品與機(jī)械;2012年04期
6 張慶文;劉永壘;曾宇;洪厚勝;;自吸式反應(yīng)器吸氣性能的研究與數(shù)值分析[J];化學(xué)反應(yīng)工程與工藝;2012年02期
7 王嘉駿;李良超;顧雪萍;馮連芳;;攪拌反應(yīng)器內(nèi)氣液兩相流的CFD研究進(jìn)展[J];化工設(shè)備與管道;2012年01期
8 張慶文;劉永壘;石東升;洪厚勝;張繼民;;自吸式反應(yīng)器特性參數(shù)的實(shí)驗(yàn)研究[J];化學(xué)工程;2011年12期
9 楊鋒苓;周慎杰;;攪拌槽內(nèi)單相湍流流場(chǎng)數(shù)值模擬研究進(jìn)展[J];化工進(jìn)展;2011年06期
10 高勇;郝惠娣;張永芳;;雙層槳自吸式攪拌槽氣-液分散性能[J];化工進(jìn)展;2010年03期
相關(guān)碩士學(xué)位論文 前5條
1 田浩浩;噴射環(huán)流反應(yīng)器的數(shù)值模擬[D];浙江工業(yè)大學(xué);2014年
2 譚朝尹;噴射環(huán)流反應(yīng)器的數(shù)值模擬[D];浙江工業(yè)大學(xué);2012年
3 胡雨晨;溢流式攪拌釜反應(yīng)器內(nèi)多相流動(dòng)與混合的理論研究與工程優(yōu)化[D];浙江大學(xué);2012年
4 高勇;雙層槳自吸式攪拌槽的數(shù)值模擬及實(shí)驗(yàn)研究[D];西北大學(xué);2010年
5 李偉;離心剪切流場(chǎng)特性研究及其應(yīng)用[D];湖南工業(yè)大學(xué);2007年
,本文編號(hào):2058836
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2058836.html